



#### Anisotropic nonlinear homogenized constitutive model of masonry walls SAHC 2020

#### **Michel Y. Chalhoub**

University of Minho Guimaraes, 2020



University of Minho University of Padova Czech Technical University in Prague Technical University of Catalonia

**ARCCHIP- ITAM** 



The content of the present document derives from a SAHC master thesis work that belongs to the author and University of Minho. The use of any result should be subjected to a prior approval of the author.



University of Minho University of Padova Czech Technical University in Prague Technical University of Catalonia

**ARCCHIP- ITAM** 



#### Table of contents

- Motivation and scope
- □ FE homogenization approach
  - \* Micro-model validation
  - ✤ Macro-model validation

#### □ Applications

- ✤ Irregular wall
- Two historic masonry bridges

#### □ Final remarks







# Motivation and scope







#### Motivation and scope

Structural analysis of URM : complex task especially for irregular or multi-leaf walls. Why?

Heterogeneity and (spatial) variability of its mechanical properties.

Reliable structural analysis  $\rightarrow$  A proper mechanical characterization of the masonry.

#### How?

In-situ non-destructive or minor-destructive tests  $\rightarrow$  acceptable values in the elastic range.

Shear, compressive or tensile strengths  $\rightarrow$  accomplishable via destructive tests.

FE homogenization methods → Special interest, Why?

Response of masonry under different loading conditions  $\rightarrow$  reduction of undesired damage.

Constitute the focus of the present work.





#### Motivation and scope

#### Modelling strategies for the mechanical study of masonry structures:



(a) detailed micro-modelling; (b) simplified micro-modelling; (c) macro-modelling; (d) multi-scale method (Silva et al. 2018).

Main objective of the current work:

To develop a FE homogenization-based approach based on a simplified micro-modelling,

and to apply it at a multi-scale level.







# FE homogenization approach





#### FE homogenization approach

- Homogenization approach based on some specific types of boundary conditions, as for instance, boundary displacement varying linearly with the position.
- Accuracy of the symmetrical positive-definite compliance tensor in the elastic phase.

#### Pre-processing phase ad-hoc algorithm

An *ad-hoc* algorithm has been developed in order to avoid singularities due to the high density of joints.





Modifications induced on the geometry of a highly jointed media.







#### **Simplified Micro-model validation**

#### Mechanical constitutive models

#### Mortar

Cohesive Fracture with Damage-Plasticity and Unilateral

Contact (CZFRAC, Disroc 2020)

Compression Nonlinear elasticity with maximum closure





Tension

Plasticity & damage









Cohesive Fracture with Damage and Plasticity (CZFRAC, Disroc 2020)



#### **Advanced Masters in Structural Analysis of Monuments** and Historical Constructions





Shear Plasticity & damage

#### Simplified Micro-model validation

#### Mechanical constitutive models

#### Units and thick mortar

 ANELVIP (Disroc 2020): Anisotropic elastoviscoplastic material : Ellipsoidal elasticity, anisotropic Mohr-Coulomb with cut-off or Drucker-Prager plasticity and Lemaitre creep law.



Stress-Strain curves for ANELVIP elastoplastic material with different softening parameters (Disroc 2020).







#### Simplified Micro-model validation: running bond

#### **Masonry characteristics**

Homogenized elastic stiffness

Brick units:  $210 \times 100 \times 52 \text{ mm}^3$ . Mortar joints thickness: 10 mm.  $E_{brick} = 20,000 \text{ MPa}; v_{brick}=0.15; E_{mortar} = E_{brick}/r (1 < r < 1000)$ and  $v_{mortar}= 0.15$ .



#### Zucchini and Lourenço (2002)



• Results are in good agreement (maximum relative error is below 4.6%).







Zucchini and Lourenço (2002)

#### 12

#### Simplified Micro-model validation: running bond

#### **Masonry characteristics**

 $E_{unit} = 20,000 \text{ MPa}; v_{unit} = 0.15; E_{mortar} = 10,000 \text{ MPa}, f_{cb} = 50 \text{ MPa}, f_{tb} = 2.5 \text{ MPa}, f_{cm} = 6 \text{ MPa}, f_{tm} = 0.6 \text{ MPa}, \phi = 30 \text{ degrees}$ .

#### Inelastic range: in-plane Compression

- Results in compression are concordant:
  - ➢ Elastic part.
  - Pick strength.
  - Post-pic behavior.









#### Simplified Micro-model validation: running bond

#### **Masonry characteristics**

 $E_{unit} = 11,000 MPa$ ,  $v_{unit} = 0.2$ ,  $E_{mortar} = 4,000 MPa$ ,

 $f_{tm} = 0.25 MPa$ , c = 0.6 MPa (mortar cohesion), and  $\phi =$ 

30 degrees (mortar friction angle).



Zucchini and Lourenço (2002)

#### Inelastic range: Tension and shear, in-plane and out-of-plane validation



The model reproduces the orthotropic behavior of the considered panels in terms of moment-

curvature curves with acceptable accuracy (maximum difference 5%).







#### **Macro-model validation**

#### Mechanical constitutive models

#### Same model of units and thick mortar : ANELVIP



The indicator surface of the Young's modulus fourth root is an ellipsoid: Parameters: E1, E2, v.







# **Applications**

The numerical simulations presented in the following used the Finite Element code Disroc and its damage and softening plasticity models ANELVIP for bulk materials and CZFRAC for joints (Disroc 2020).





# Homogenization of a rubble wall







#### **Rubble wall**





1149 triangular elements and 417 interface elements.

#### **Materials**









#### **Rubble wall**





Imposed displacement on the RVE boundaries:

- (a) Vertical mode-I response, i.e. compression and tension;
- (b) Horizontal mode-I response, i.e. compression and tension;
- (c) Pure shear.





#### **Rubble wall**

Framework to derive the composite 2D and 3D failure surfaces:

• **One-step strategy**: boundary conditions applied simultaneously.









#### **Rubble wall**

Framework to derive the composite 2D and 3D failure surfaces:

• **Two-step strategy**: boundary conditions applied in multiple steps.









#### **Rubble wall**

Micro-Model: Compression test (Two-step approach)



- A slight orthotropic behavior in elasticity.
- Quasi-isotropic behavior in plasticity.
- Compressive strength is governed by the units behavior.









#### **Rubble wall**

Micro-Model: Compression test, failure mechanism



• The micro-model is able to predict the failure mechanism: occurring through a continuous path that connects thick mortar areas (c).





# L30 m

#### **Rubble wall**

Micro-Model: Tension and shear tests



- Quasi-isotropic behavior in elasticity and plasticity.
- Homogenized tensile and shear strength governed by mortar joints.







Rubble wall: 2D failure surfaces One-step versus Two-step approach

- A 2D strength surface is provided ( $\sigma_{xx}$ ,  $\sigma_{yy}$ ,  $\tau_{xy} = 0$ ); it is suitable for a planestress analysis.
- The difference between the one-step approach and the two-step approach is negligible.







One-step versus Two-step approach

- The **two-step** approach is far more time consuming that its counterpart.
- It poses some numerical convergence issues, especially for high stress values of pre-compression.
- It hinders achieving the full envelope.
- It was unable to track segments AB and BC since, in this region, a pre-compression value whose value can be higher than the uni-axial failure stress is required.







#### Rubble wall: 2D failure surfaces

#### One-step versus Two-step approach



- For the considered rubble wall, the one-step approach is more suitable than its counterpart.
- This conclusion is to be confirmed by comparing the two approaches for other types of masonry walls.





Rubble wall: 3D failure surface (One-step approach)

- A 3D strength is provided ( $\sigma_{xx}$ ,  $\sigma_{yy}$ ,  $\tau_{xy}$ ); it is suitable for masonry walls subjected to different states of stresses (axial and shear stresses).
- It shows a quasi-isotropic failure.
- Additional simulations are required aiming to smooth the surface.
- The lower part of the surface needs to be completed by applying a negative shear stress.





### Two historic masonry bridges in Lebanon









#### Two masonry bridges - Lebanon

- Lebanon has a rich cultural heritage value that stands on 5000 years of history.
- No structural studies can be found in the literature concerning masonry bridges in Lebanon.
- Two coastal masonry bridges are considered.
- A preliminary structural assessment is performed through nonlinear pushdown and mass push-over analysis.
- A simplified micro-model is performed under plane stress conditions.









#### Two masonry bridges - Lebanon

#### **Reliable structural assessment of**

#### masonry bridges





- Material characterization.
- NDT.
- Moving load.
- Supports settlement.
- Time history analysis.
- 3D modeling.
- Etc.

Out of the scope of the present work







## Nahr Al Kalb Bridge









#### Nahr Al Kalb bridge

- The old bridge of Naher al Kalb is an iconic monument in Lebanon.
- It dates back to the Ottoman period (first mention 1344).
- It suffers from multiple disorders principally due to lack of maintenance.













#### Nahr Al Kalb bridge





- Units:  $E_{brick} = 30,000 \text{ MPa}; v_{brick} = 0.25; f_{cb} = 17 \text{ MPa}, f_{tb} = 2 \text{ MPa}, C_b = 5 \text{ MPa}; \Phi_b = \Psi_b = 30^\circ; \eta_c = 0.7; \eta_{\phi} = 0; B = 50; M = 0$  (brittle material).
- Mortar joints: K<sub>n</sub> = 25000 MPa/m; K<sub>0n</sub> = 3000 MPa/m; K<sub>t</sub> = 5000 MPa/m; K<sub>0t</sub> = 1000 MPa/m; c = 0.05 MPa; f<sub>tm</sub> = 0.05 MPa, φ = ψ = 25 °; e = 20 mm, h<sub>r</sub> = 0.8; β = 1.1 (slightly brittle) β'=1.





#### Nahr Al Kalb bridge



• Maximum compressive stress is observed in the arche.







#### Nahr Al Kalb bridge: Pushdown analysis



#### Nahr Al Kalb bridge: Pushdown analysis

붉





#### Nahr Al Kalb bridge: Pushdown analysis





米

ARCCHIF



#### Nahr Al Kalb bridge: Pushover analysis



• A four-hinge failure mechanism is observed with a plastic hinge at the top left of the central keystone and above the base of the central pillar.





#### -X direction -X Di

#### Nahr Al Kalb bridge: Pushover analysis

- The failure mechanism is triggered at the base of the central left column due to an uplift effect and due to tension failure in the mortar bed joints.
- The right arch is affected by the onset of a plastic hinge on the right side of its central keystone.
- Irreversible strains are localized at the base of the central columns

step 1





#### Nahr Al Kalb bridge: Pushover analysis



- The capacity value is 0.91g (considered as high).
- The response after cracking is more developed than Al Fidar bridge.
- Result can be more improved to have more insight on the strength and post-peak behaviour.







#### Nahr Al Kalb bridge: Macro-model REV size

- Window test approach [Lourenço et al. 2013].
- 1.4x1.4 m<sup>2</sup>.
- 2.4x2.4 m<sup>2</sup>.
- Rotation 45°.















#### Nahr Al Kalb bridge: Macro-model

#### Vertical stress $\sigma_{yy}$ due to self weight



• Quasi-similar mapping distribution and stress values in spandrel walls and arches.







# Al Fidar bridge







#### Al Fidar bridge

- The historic bridge was built over Al Fidar river. In 1292, it was the location of a famous battle between Kurdish Muslim troops and local Christian forces [Petersen 2020].
- It is a double arch irregular masonry bridge, still operational nowadays.
- Poorly maintained.









#### Al Fidar bridge

#### Geometry



#### Materials

The mechanical properties adopted for the masonry components rely on empirical

judgement (lack of mechanical material characterization).







#### Al Fidar bridge





(1959 nodes, 3619 triangular elements, and 1778 interface elements)

#### Basic validation of the model



- Comparing the self-weight analysis and evaluate the vertical reactions.
- Soil pressure beneath the central column  $\cong$  0.1 MPa (coherent value).





#### Al Fidar bridge: Pushdown analysis

米



• Damage is initiated in the spandrel head joints above the supports (step 0.25), then in the joints between the arches and the spandrel units.







#### Al Fidar bridge: Pushover +X direction



- A **four-hinge failure mechanism** is observed in the left arch due to damage of mortar joint at the left side of the central keystone and near the base of the central column.
- At the right arch, a three-hinge mechanism is observed, and damage on some headjoints of the spandrel walls.
- The damage in the head joints above the left arch is due to joints tension stress.
- A high irreversible strain is localized at the base of the columns and on the spandrel area above the central keystone of the arches.







#### Al Fidar bridge: Pushover +X direction



- An i7-8650U processor laptop has been used with 16 GB of memory RAM.
- The processing running time is 56 seconds.
- It is considered as very low computational time, but may be seen together with the low value of load increments (50 load increment).







#### Al Fidar bridge: (Micro-Macro)

#### Self weight

 Quasi-similar mapping distribution and stress values in the arches and spandrel walls.



#### Pushover +X

- Comparable deformation shapes.
- Macro: Joint damage is distributed in the extrados of the left lower parts of each arch.







#### Al Fidar bridge: (Micro-Macro)

#### Pushover +X



- Capacity : 0.52g Micro versus 0.57g Macro.
- The macro-model shows a stiffer response, this is due the assumption of the shear modulus (ellipsoidal elasticity).







# **Final remarks**





#### **Final remarks**

• A homogenization FE-based strategy is presented with an emphasis on the applied boundary conditions.

#### Simplified Micro-scale model

- Unit-unit and unit-mortar interfaces are represented through zero-thickness interface with cohesive behavior with damage-plasticity and unilateral contact. Units are characterized by an orthotropic behavior in the elastic phase and an anisotropic plastic behavior with softening.
- The validation of such micro-scale approach has been conducted on a running-bond masonry wall, for in-plane compression tests and in-plane and out-of-plane shear and tension tests.





#### **Final remarks**

- Macro-model
  - The formulation of a new anisotropic macro-model (ANELVIP) with softening is presented.
  - Validation tests on Flemish-bond masonry wallets have confirmed the accuracy of the macro-model in compression - both in elastic and inelastic ranges.
  - The overestimation of the shear modulus due to the ellipsoidal elasticity assumption has been solved by introducing an independent shear modulus parameter as a direct input.
  - > The shear peak value and residual stress are accurately represented.
  - The macro-model can reproduce the homogenized tension Young's moduli (directions x and y) and the peak stress. The ongoing validation of the new developed softening in tension shows promising results.





#### **Final remarks**

- An algorithm is developed to cope the difficulties related with the FE pre-processing stage of a structure with high density of joints.
- Case study 1: a rubble wall
  - Good efficacy to: obtain the homogenized stress-strain curves; to predict the failure mechanism; and to generate the composite strength domain (2D and 3D).
  - The difference between the two-step and one-step strategy strategies is negligible.
    The one-step loading path strategy is more practical from an engineering standpoint (for the considered wall).
- Case study 2: Two masonry bridges
  - The case studies allowed to apply the developed numerical models and predict the expected failure mechanisms of structures with high density of fractures.
  - > The computational application is promising due to the **low computational time cost**.





#### **Final remarks**

➤ The obtained results of the pushdown and pushover analysis should be examined within a qualitative approach due the lack of materials mechanical characterization.

#### Perspectives of the present work

ANELVIP macro-model : Validation of the • 0.08 Tension test: Micro versus Macro s(MPa) new version in shear (independent shear 0.07 modulus), and tensile behavior (with 0.06 softening). ----- Tension Y, Macro: ANELVIP Softening Tension 0.05 31430 ANELVIP: Anisotropic ElastoViscoPlasticity — Tension Y, Micro Mohr-Coul.(0)/Druck.-Prag.(1,2,3)+ Creep 0.04 Nb: 24  $Param1 = E_1$  $Param 13 = b^{p}_{T}$ Param2 =  $E_2$ Param 14 = a0.03  $Param3 = v_{12}$ Param15 = nParam4 = V13  $Param16 = \alpha$ Param5 =  $\mu_{12}$  $Param 17 = \sigma_c$ 0.02  $Param 18 = a^{v}_{N}$ Param6 =  $\omega$  (in degrees) Param7 = CParam19 =  $b_T^{\nu}$  $Param20 = \varepsilon_0$ Param8 =  $\phi$  (in degrees) 0.01 Param9 =  $\psi$  (in degrees)  $Param21 = \eta_c$ ε**(%)** Param10 =  $\sigma_T$  $Param22 = \eta_{\phi}$ Param23 = BParam11 = Option (01,2,3)0.00  $Param12 = a^{p}_{N}$ Param24 = M0.00E+00 2.00E-05 4.00E-05 6.00E-05 8.00E-05 1.00E-04





#### Perspectives of the present work

- Extension of the proposed homogenization approach to **other types of masonry** through a statistical approach: a **database** may result offering anisotropic mechanical parameters and strength surfaces.
- Refined **calibration** of the bridges macro-model: Additional simulations should be conducted considering different types of loading (*concentrated*, moving, etc.)
- Engineering applications: The applied FE approach (micro- and macro-) may be of a practical use for a structural assessment of masonry structures.







Chalhoub M (2006) Apports des méthodes d'homogénéisation numériques à la classification des massifs rocheux fracturés (PhD thesis, in French). Ecole Nationale des Mines de Paris, Mines ParisTech

Chalhoub M (2010) Massif rocheux: Homogénéisation et classification numériques. Presses des Mines, 2010, 232 pages, Paris

Chalhoub M, Pouya A (2016) Modélisation du renforcement des ouvrages en maçonnerie par la méthode des éléments finis : Etude de deux cs du patrimoine libanais bâti. In: JNM2016. IFSTTAR Ecole des Ponts, ParisTech, 17-18 Mars 2016.

Disroc (2020) A Finite Element Code for modelling Thermo-Hydro-Mechanical processes in fractured porous media -Catalog of Materials (http://www.fracsima.com/DISROC/Materials-Catalog.pdf).

DISTRUCT (2020) DISTRUCT Solutions s.a.r.l., company profile. www.distruct.com

Petersen A (2020) Roman, Medieval or Ottoman: Historic Bridges of the Lebanon Coast. Bridg Civiliz 175–203

Pouya A, Ghoreychi M (2001) Determination of rock mass strength properties by homogenization. Int J Numer Anal Meth Geomech 25:1285}1303. doi: 10.1002/nag.176

Pouya A (2007) Ellipsoidal anisotropies in linear elasticity, Extension of Saint Venant's work to phenomenological modelling of materials. J Damaged Mech 16:95–126

Pouya A, Chalhoub M (2008) Numerical Homogenization of Elastic Behavior of Fractured Rock Masses and Microcracked Materials by FEM. In: IACMAG. Goa, India, pp 403–407

#### Thank you for your attention



