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General Notation

For each material type, the code is composed of 5 digits:

The first digit is 1, 2,3, 4 for designating the elements nature:
1 for bar elements,
2 for joint elements (interfaces, cracks and fractures),
3 for surface elements (bulk materials),
4 for anchor elements.
5 for beam elements
6 for bolt elements.

This second digit is 1 or 2 to designate the phenomena which is concerned:
1 for Mechanics,
2 for Hydraulics,
3 for Thermal.

The other 3 digits define the constitutive model.

For each material constitutive model, first the number of parameters, Nb, and then the values
of the Nb parameters are specified.
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I) Mechanics

I.1) Mechanics - BARS

11100 : Linear elastic bar element

Constitutive Relation : F = E; €
F : axial force
€ : axial deformation

Note: In 2D plane modeling, a unit the thickness of the model is considered in relation with a
3D modeling. The section S considered for the bar is so related to a unit thickness of the
model. If, in the direction perpendicular to the plane of modeling, the bars are distant, for
instance, of 40 cm and if the adopted unit length is meter, then there are 2.5 bars per unit
thickness of the model. Then, the physical section of the bars has to be multiplied by this
factor 2.5 to define S in the above relation, and then multiplied by the Young’s modulus to
define the above parameter Ej.

Example: The length unity is meter and the stress unity, MPa, and so the force unity, MN
(Mega Newoton). Bars diameter is 2 cm and bars distance in the direction perpendicular to the
plane of modeling equal to 40cm, and the steel Young’s modulus 210.10° MPa. Then
E, = Tx(0.01)% x2.5 x210.10° =1650 MN. The axial force calculated by the code is expressed
in MN unity.

Nb=1
Param1 = E; (The product EXS of the Young modulus and the section of the bar.
Dimension : force)

11100 ELinear Elastic bar element

Nb: 1
Paraml = E;
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11110 : Linear elastic-plastic bar element

Constitutive Relation : F = E, (€—€)
de’ =0 if o< gy or if 0 = 0y and do< 0
F : axial force

€ : axial deformation

€7 : axial plastic deformation

Note: The section S for E; and Y; takes into account in the same way the bars distance in the
direction perpendicular to the plane of the model: see the note for the material 11100. In every
configuration, we must have Y/E=0,/E.

Nb=2

Paraml1 = E; (Product ExS of the Young modulus and the section of the bar. Dimension :
force)

Param2 =Y, (Product 0,5, limit elastic force)

11110 Elastoplastic bar element
Nb: 2

Paraml = E;

Param2 =Y,
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I.2) Mechanics - ROCKJOINTS & FRACTURES

21100 : Linear elastic joint

. . . T Kt Ktn ut
Constitutive Relation: 0=Ku, =

Nb=3

Paraml = K, (tangent stiffness)

Param2 = K,, (normal stiffness)

Param3 = K,; = K, (non diagonal stiffness term, defining dilatancy)

Note: The stiffness parameters K,, K,, K;, have the dimension of stress/length. Their values
are highly depending on the physical properties of the fractures walls (roughness..) and/or of
filling materials (for rockjoints). If a rockjoint is assimilated to a thin layer of thickness e of
an elastic material with Young’s modulus E and shear modulus y, then K; = p/e, K,, = E/e and
K»n=0.

21100 Linear Elastic joint

Nb: 3

Paraml = K, (tangent stiffness)

Param2 = K,, (normal stiffness)

Param3 = K,; = K, (non diagonal stiffness — dilatancy)
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21120 : Linear elastic with Mohr-Coulomb plasticity

0=K@u-u)
Elasticity: The model 21100
Plasticity : Mohr-Coulomb criterion:

f(©) =[t|+0,tan@-c<0

Nb=5
Paraml = K,
Param2 = K,

Param3 = K, = K,
Param4 = ¢ (cohesion)
Param5 = @ (in degrees, the friction angle)

21120 Linear Elastic joint with Mohr-Coulomb
Plasticity

Nb: 5

Paraml = K;

Param2 = K,

Param3 = K,,; = K},
Param4 = ¢ (cohesion)
Param5 = @ (in degrees, the friction angle)
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21200 : Non-linear hyperbolic elasticity

The closure displacement is limited by the initial thickness e of the interface. The stress tends
to infinity when closure displacement u, tends to -e and to ke for great positive openings:

AO‘
n

ko”n

_1+un/e

n

koe _____________________

1
Q

The tangent behavior is linear:
0[ = kt ul +knt un

ko”n
t

The normal stiffness k, is u,-dependant and given by:
_ kg
I+u,/e

n

Nb =4
Paraml = K, (tangent stiffness)
Param?2 = ky (normal stiffness)

I+u,le

Param3 = K,, = K;;, (non diagonal stiffness term causing dilatancy)
Param4 = ¢ (maximum closure or physical thickness of the interface)

Nb: 4
Paraml = K, (tangent stiffness)
Param?2 =k, (normal stiffness)

21200 Non-linear hyperbolic elastic joint

Param3 = K,; = K, (non diagonal stiffness — dilatancy)
Param4 =e  (maximum closure or physical thickness

Fracsima - 2016

www.fracsima.com




DISROC Materials’ Catalogue

21220 : Non-linear elasticity with Mohr-Coulomb

plasticity
o=K(u-u)
Elasticity: The model 21200
Plasticity : Mohr-Coulomb criterion:
Nb=6
Paraml = K;
Param?2 =k
Param3 = K,; = K;,,
Param4 = ¢
Param5 =c¢
Param6 = @ (degrees)
21220 Non-Linear Elastic joint with
Mohr-Coulomb Plasticity
Nb: 6
Paraml = K;
Param?2 =k
Param3 = K,; = K,,,
Param4 = ¢
Param5 = ¢

Param6 = @ (degrees)
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21230 : Non-linear elasticity With ILemaitre creep law

u=u'+

K, K, |[u,—u/
n u,—u,

K

n

1+u 1+u, /e
Elasticity: the same that 21200
Viscous strain: Lemaitre creep law for uniaxial creep under constant stress @ with a stress
threshold o, :
£'(t) =a <o-0.>1%
where:
<x>=0 if x<0
<x>=x if x>0

The incremental creep law uses the internal variable & =&"® and reads:
. 1/ .
EZEUG, E:(a<0-_o-c>q)“’ 5:0‘50"5
To avoid numerical problems near {=0, the law is completed by: &=a ES'IE if €<¢go
This law is adapted to the joint shear and normal creeps.

For the normal creep:

. 1/a >

En = sn (bnh < |0n| - oc >q) 5 I’.t: =a E:_lzn
where s, = £1 is the sign of 0, and b, a constant parameter, The normal creep must be limited
in order to avoid the closure exceeding e, or u, falling below —e. The elastic law takes already

into account this constraint. The parameter 2, 0<h <1, is introduced in order to satisfy this
condition.

For shear creep, it is supposed that, the normal compressive stress decreases the slip rate,
similar to frictional effects, and so the criterions depends on the normal stress also with a
“friction angle’ parameter @. It is also supposed that a traction normal stress has no effect on
the viscous slip. This leads to the following expressions:

&= (bl (-o)mo-1)) " 0 a=ag

where s, = 1 is the sign of T and b, a constant parameter

Nb=12

Paraml = K, (tangent stiffness)

Param?2 =k, (normal stiffness)

Param3 = K,; = K;;, (non diagonal stiffness term causing dilatancy)
Param4 = ¢ (maximum closure or physical thickness of the interface)

Param5 = ¢
Param6 =
Param7 = b,

Param& = b,

Fracsima - 2016 www.fracsima.com




DISROC Materials’ Catalogue

Param9 =1,
Param10 = o,

Paraml11 =@ (°)

Paraml12 =g

Internal Variables:

Vin(n,1): internal for non linear elasticity
Vin(n,2) : not existing for this material
Vin(n,3) =¢,, Vin(n,4) =¢,

11

21230 Non-Linear Elastic joint with Lemaitre
creep law

Nb: 12

Paraml = K; Param11 =@ (°)

Param?2 =k, Param12 = g,

Param3 = K, = K,
Param4 = ¢ (maximum closure)

Param5 = ¢
Param6 =
Param7 = b,
Param8 = b,
Param9 = 1,

Param10 = o,

Fracsima - 2016
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21240 : Non-linear elastoplastic with Pouva strength
criterion and with softening

Strain : u=u"+u’
Elasticity: the same that 21200

o=K@u-u),

T_ K, K, ut_utp
c)-n Knt Kn un—u,f

Non linear modulus:

- ko
"ol+u, /e
Strength criterion (plasticity): F(0,8)=/ T’ +b’g> +ho, tan@, - g T,
C! +0, tan’
T, = S0 1O AN R b=T,—04tan@,
20, tanQ,

The initial strength function Fy and the residual F, are hyperbolic surfaces represented in the
figure. The evolution from to the other results from the variation of the g and & which are
evolution functions for the cohesion and friction angle and vary from 1 (initial state) to
residual values respectively g, and A,

—_— -[r —_ Gr

& C, 0y
h =2
®

This evolution is controlled by the ductility parameter (3. The evolution of g can include a
hardening (increasing) stage if 3 >1.

Non associate Plasticity with dilatancy angle Wy : 4" =\ Z_G
9

G(0,&) =+ T +b’g’ +h o, tany,

’

Hardening law: E=zqa ‘Z p‘
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el

Nb=12

Paraml1 = K, (tangent stiffness)

Param2 = ky (normal stiffness)

Param3 = K,; = K, (non diagonal stiffness term causing dilatancy)
Param4 = ¢ (maximum closure or physical thickness of the interface)
Param5 = Cy

Param6 = @ (°)

Param7 = g (°)

Param8 = og

Param9 = g,

Param10 = A,
Paramll =a
Param12 =3

Condition:  Or tan@y < Cy

Internal Variables:

Vin(n,1): reserved for damage (not existing for this material)
Vin(n,2) : internal for non linear elasticity

Vin(n,3) =

Non-linear elastoplastic joint with softening
slasticity

Paramll =a
Param12 =3
K
1aximum closure)

Fracsima - 2016 www.fracsima.com




DISROC Materials’ Catalogue 14

21510 : CZFrac: Cohesive Zone Fracture with
Damage-Plasticity and Unilateral Contact

The Cohesive Zone Fracture (CZFrac) model describes the evolution of an interface from a
cohesive interface like a rockjoint or thin layer of cohesive material (left), to a fracture with
unilateral fictional contact (right).

The normal and tangent stiffnesses depend on a damage variable 0 <D < 1 with residual
values for D=1. The tangent relative displacement is divided into an elastic and a plastic part.
The plastic part represents the irreversible slip on the frictional contact surface after the
interface in totally damaged.

D =0 : cohesive joint D =1 : frictional contact

A

T

s : contact parameter depending on -u, ; s=1 if u, <0, s=0 ifu, =0
Damage criterion: F(o,D)= 1* - (hon tan(p)2 +2hg1.0 tan@- g°C>
C* +0tan’ t
with: .= —R(p , hr _ tan 9,
20 tan@ tan @
g(D)=(1-D)(1-BIn(1- D)) WD) =h, +(1-D)¥ (1-4,)

Fracsima - 2016 www.fracsima.com
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Plasticity: There is no plastic deformation as long as D is smaller than 1: %" =0 if D<I

, , , o ul
Then the plastic deformation occurs only in the shear direction: u” :( 6 J

The plastic F” criterion is the residual damage criterion, i.e., the damage criterion for D=0. It
is written as:

ko, 0
. T u,—ul
F’(0)= [1|+h,0, tan® with: ( j =5 ko, [ rot }
O' ———
" l+u,/e
The parameter 3 > 0 controls the brittle (small 3) to ductile (increasing ) damage behavior.

For a pure normal stress, the normalized traction-separation curve has the following shape
depending on [3 value:

Traction-Separation curves for different [3 values

Option Toughness
If the Toughness Option is chosen (Param13=1) then the parameters Og and C are determined
from the toughness K’. (Param14) by the following relations depending on the size L of the

joint element:
2 C
ox(L =K{,/—, C(L)=— 0 ,x(L
r(L) =K, 7 (L) 5 r(L)

R
Where O and C are the parameters 4 and 5 defined for the material (see the list below). This
allows modeling well the propagation for large values of L without mesh size dependency.

Option Plasticity

For a shear loading, the shear stress versus slip displacement has de same type of dependency
on 3 value in damage phase. It depends also on the value of the normal stress and if plasticity
is taken into account or not. If the plasticity is not modeled (Option O for the parameter 12 of
the model), then the curve follows the line with the slope ko, (residual tangent stiffness) for
great values of u, (following figure):

Fracsima - 2016 www.fracsima.com
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0 10 20 30 40 ul

Shear stress versus slip under different compressive normal stresses for the option without
plasticity: the curves join and follow the elastic line with residual stiffness ko,

If plasticity is taken into account (Option 1 for the parameter 12 of the model), then the curve
ends on a plastic plateau with the residual shear stress T'. This shear stress is related to the
normal stress g,, with the residual friction angle &, tan@, (following figure).

Note that this relation holds only of the contact is maintained: because of the unilateral
contact condition, if #,>0 then s =0 and then 0, =0 and so 1, =0.

T .-
14 Jl.r' x"“x&_
12 - |' T e
o | -L‘"—-.__‘___‘_ ‘_,A""" 5 3
" n
7 e 2
5 - ‘,‘,A"‘ i On
- 1
4 e T,=h,0, tan( O,
2 A =t L
L Ko
0 10 20 30 40 ut

Shear stress versus slip under different compressive normal stresses for the option with
plasticity

For brittle damage (small values of 8) and plasticity, it is possible to obtain a sharp decrease

of the shear stress after the peak value and then an increase to reach the plastic residual stress
(following figure).
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T,=0,tan(y

iG -~

(%]

T,=h, 0, tan(

i
A £
4 - Z

/

3

\ ko

o 5 10 15 20 25 U;

[a¥]

Shear stress versus slip for the option with plasticity and brittle damage (3 < 1)

Nb=12
Paraml = K,
Param?2 = K,
Param3 = ¢
Param4 = og
Param5 = C
Param6 = @ (°)
Param7 = h,
Param8 =3
Param9 = f3'

Param10 = k&,

Paraml11 = ko,

Param12 = Option (1 if plasticity taken into account)
Internal variable

Vin(n,1) : D

Necessary Condition on parameters: C >0, fan @

21510 Cohesive Fracture with Damage-Plasticity
and Unilateral Contact

Nb: 14

Paraml = K, Paraml11 = kg,

Param2 = K, Param12 = Option Plasticity

Param3 =e Param13 = Option Toughness

Param4 = og Param14 = KIC

Param5 = C

Param6 = @ (°)

Param7 = h,

Param8 =3

Param9 =3

Param10 = ko,

Fracsima - 2016 www.fracsima.com
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1.3) Mechanics - BULK MATERIALS

31100 : Linear elastic and isotropic material

Nb=2
Paraml = E (Young’s modulus)
Param?2 = v (Poissson’s ratio)

31100 Linear Elastic and Isotropic Material

Nb:2
Paraml = E (Young’s modulus)
Param2 =v (Poisson’s ratio)

31110 : Elastic-plastic isotropy with Drucker-Pragar
criterion

g=¢g+¢’
Linear elasticity with parameters E and V (see the model 31100)
Plasticity with Drucker-Prager criterion :  F(0) =,/3J, + sina [, - K

!
> —ES,-]-S,-,-

I,=0

i ?

1
S; =0, ‘5%5

K and sin0 are material constants.

- 02

()]

Note that the Drucker-Prager criterion is basically written as:
F(o)=l,+yI,-K'
The equivalence between the two expressions is ensured by taking:

sinaQ =x/§y, K=\/§K'

19
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Nb=4

Paraml = F
Param2 =v
Param3 = K

Param4 = sina

20

31110 Linear Isotropic Elasticity with
Drucker-Prager Plastic Criterion

Nb:4

Paraml = E
Param2 =v
Param3 = K

Param4 = sina

Fracsima - 2016
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31120 : Elastic-plastic isotropic material with Mohr-
Coulomb criterion, Non-Associate and Traction
Truncated

£€=¢g+¢&"
Linear elasticity with parameters E and V (see the model 31100)

Plasticity with Mohr-Coulomb criterion:

0O,—-0 O, +0
F(o-): 1 3+ 1 3

sin@—C cos@ < 0, where 0;>0,>03 principal stresses.

(In Disroc, compressions are negative, and the above model is equivalent to Soil Mechanics
convention, where compressions are positive, and then the Mohr-Coulomb criterion reads
F(0) = 0,-0, ¢, +0,
2
the following figure).

sin@—C cos@ < 0, where 0, > 0, > 03 principal stresses, as in

Flow rule: &? = )'\g—G or more precisely &” Dg—G (external normals cone for singular points,
o o

with:

o) +0,

(0]
3 421

Plastic Potential : G (o) = 0, -

sin
> U]
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03
A
As
Bz Bl
(0,,20,,20,,) O
> Ay A
S £z
Piid 02 (o] (G 55 >0 ) B3 ()]
1120, 203

o, (0,20,20,)

Mohr-Coulomb Criterion in principal stresses space

Tensile strength truncation: 0, <01 where Or designates the tensile strength

Traction Truncated Mohr-Coulomb Criterion

Note 210514:
2C
if 0,2C c9s(p then it has no effect. If —C?S(pS o,<C —C?S(p then it has no effect for
sin @ 1+sin@ sin @
2C 2C
uniaxial tractions: the tensile unixial strength remains equal to ﬂ Jdf o, < ﬂ
1+sin@ 1+sin@

then it will represent the limit aof uniaxial traction allowed by the criterion, or the tensile
(uniaxial) strength.
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Nb=6

Paraml = £
Param2 =v
Param3 = C

Param4 = @ (°)
Param5 =y (°)
Param6 = or

23

31120 Linear Isotropic Elasticity with
Mohr-Coulomb Plastic Criterion
Non-Associate and Traction Truncated

Nb: 6

Paraml = £
Param2 =v
Param3 =C

Param4 = @ (°)
Param5 = (°)
Param6 = or

Fracsima - 2016
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31121 : Elastic-plastic Mohr-Coulomb with evolving
properties (Gelisol)

This model is exactly the same that the Elastic-plastic Mohr-Coulomb model (31120) but with
two set of parameters. The model 31120 includes 6 parameters (E,V,C, @, Y, 07). The model
31120 includes 6 parameters (E.,V ;, Ci, @, Y, o;") for the initial values of the Young modulus,
Poisson ratio, cohesion, friction angle, dilation angle and tensile strength, and 6 parameters
(ErV 5 Cr, @, Yy, OfT) for the initial values of these quantities. The evolution of the parameters
between the initial and final values is given by internal variables v' (i=1,6) in the following
form :

E= (1-V1) E+ vy Ef

V= (1-v2) Vit vy Vr

C= (1—V3) CiH v3 Cf

@=(1-v4) Qi+ v4 Qs

P=(-vs) Pt vs Py

or = (1-ve) O'T,'+ Ve O'Tf

The evolution of the internal variable can be handled by the user in the User module. The
default value of the internal variables is zero.

For Gelisol model conceived to model soil and rock freezing phenomenon and its effect on
the mechanical properties, the evolution of internal variables is handled automatically in
Disroc modules according to the constitutive equations of the coupled THM phenomena (See
documentation on the Gelisol model).

Note 210515:

The Note 210514 for the material 31120 concerning the relation between the tensile strength
truncation remains valid for the evolving parameters, i.e., it takes into accound the evolving
quantities and not the initial or finale values of the parameters. According to the evolution of
the internal variables, the tensile strength 07 can become greater or smaller than the limit
given by the Mohr-Coulomb criterion and make that the truncation become active or not.

Note 210516:

The variation of the elastic parameters £ and V makes necessary the computation of the whole
rigidity matrix at each time increment and this is a very time consuming action. If the
difference between the initial and final values of these parameters is small, it is better to take
the same values for them in order to reduce computation time. Disroc does not take into
account the variation of the material’s stiffness if it is less than 0.1 %, or more precisely if:

£, -]
(E, +E)/2

In this case Disroc considers E and V constants and equal to E; and V;, and the compotation
becomes faster.

+v, =v,[<0.001

Internal Variables:
Vin(n,1): v; (can represent also scalar damage)
Vin(n,2) : v,

Fracsima - 2016 www.fracsima.com




DISROC Materials’ Catalogue

Vin(n,3): v;

Vin(n,4) : vy

Vin(n,5) : vs

Vin(n,6) : vg

Nb=12

Paraml = E; Initial Young modulus
Param?2 =v; Initial Poisson ration
Param3 = C; Initial Cohesion
Param4 = @ (°) Initial Friction Angle
Param5 = (J; (°) Initial Dilation Angle
Param6 = OT,- Initial Tensile Strength
Param7 = E; Final Young modulus
Param& = v, Final Poisson ration
Param9 = C; Final Cohesion

Param10 = ¢ (°) Final Friction angle
Param11= ) (°) Final Dilation angle

25

Param12 = ¢ Initial Tensile Strength
31121 Evolving Elastoplastic Mohr-Coulomb
Gelisol
Nb: 12
Paraml = E;
Param?2 = v;
Param3 = C;

Param4 = @ (°)
Param5 = {; (°)
Param6 = 07

Param7 = E;
Param8 = v,
Param9 = C;

Param10 = ¢ (°)
Param11= ) (°)
Param12 = OTf
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31125 : Elastic-plastic Mohr-Coulomb with
Compressibility Cap (MC-CAP)

The objective of this model is to produce a compressible material with the following shape of
the stress-strain curve for uniaxial compression as well as oedometric compression:

O 4

00l -epmaeee—ee— - _ky-a---

The curve presents, after the elastic limit, a long plastic stage with zero to small slope
followed by a quickly increasing slope.

The Mohr-Coulomb criterion with traction cutoff is used as well as a compressible material
criterion, both with hardening (following figure).

xO‘e

O, p
Figure: F; : Shear criterion (Mohr-Coulomb), Fr : Traction cutoff, F, : Compressibility
(q =0, p= ‘Om)

Constitutive model:

€ =g +¢g’
.. . _1+v . v .
Elasticity: £° = TG - Etr(c) 0,
Plasticity: g =\, 9G, +\, oG, +A, oG,
' do doc 0o
if F,<0 then A, =0 ,
Flow rule: . . L fori=s,cor T
if F;=0 then A\;20, F,<0, A\F,=0

D Mohr-Coulomb + Traction Cutoff
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This part of the model corresponds to the model 31120 with hardening for the parameter
cohesion. The traction cutoff value remains constant (no hardening).
With negative compression sign convention, the Mohr-Coulomb criterion reads:

F.(0,8)=(0,-0,)+(0, +0,)sin@-2C(§) cos® < 0

Or:
F.(0,8)=(0,-0,)+(0,+0,)sing-R (§) (1-sing) < 0
R = 2Cc'os(p
1-sin@

Where C is the cohesion, R, the uniaxial compression strength (UCS) and  a hardening
parameter.

2
R.(E) =R +kE+k, (E-¢])
where the symbol < . > stands for the positive part:

<x>=0 if x<0
<x>=x if x>0
Plastic potential: G,(0,8)=(0,-0,)+(0, +0,)sinP
The hardening rule is:

E:aﬂép:ép’ a:$llJ

2(1+sin’ )

The value of o assures that for a uniaxial compression we have : 8¢ = ‘58;‘ .

II) Compressible material

This mechanism of plastic deformation is defined by the following equations:

Plastic criterion F.(0,n) =4/a,0. +¢0’, = (1-a,0)0,, (N)
Plastic potential ~ G.(0,N) =\a,0> +$a> , & =A, 96,

00
Hardening 0, (N) =0, +k,n+k, <r] —&) >2

Hardening law n=-¢":98

Where O, is the Mises Equivalent Stress and 0, the mean stress:

oe:‘/%SijSij , om=%o:6

¢ is the porosity and ay, a», O, , k3, ks and €, are constant parameters. The evolution of the
porosity versus des total volumetric strain is given by:

6=1-))"
Which supposes that the solid grains incompressible and that the elastic volumetric strain is
negligible. This equation can be integrated in:

p=1-(-¢)e ™

Fracsima - 2016 www.fracsima.com




DISROC Materials’ Catalogue 28

With ¢ the initial value of the porosity for €=0. Of course, the condition ¢ =0 should be
verified. To avoid numerical problems with ¢=0,the condition of $=0.0001 will be imposed
when using this equation.
Note : When a uniaxial compression O is considered, the condition that MC criterion be
reached is that 0 = R, and the condition that the elliptic cap criterion be reached is that:
_ 1-a¢
0=———0,,
Ja, +9 /9
So the condition that for a uniaxial compression the MC criterion be reached before the
elliptical cap is:
1-a, G0 > 2Ccos @

Ja, +d,79 ¥ 1-sing

Parameters

Nb =17

Paraml = F Young modulus

Param2 =v Poisson ration

Param3 =C Initial Cohesion

Param4 = ¢ (° Friction Angle

Param5 =y (°) Dilation Angle

Param6 = ¢” Tensile Strength

Param7 =0°, Limit compression stress (positive for compression)
Param8 = g Initial porosity (0.0001 < ¢o< 1)
Param9 = a; positive number

Param10 = a, positive number

Paraml1 = a3 positive number

Paraml12 = k;

Paraml13 =k,

Param14 = €’,: Limit axial plastic strain for linear hardening (positive for compression)
Param15 = k3

Param16 = k4

Param17 = €, : Limit plastic strain for linear hardening (positive for compression)

Internal variable

Vinsm(n,1) : @ (porosity)

Vinom(n,2) : &

Vinm(1,3) 1 N

Conditions to be satisfied: 0 < 1-a;dg
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31125 Elastoplastic Mohr-Coulomb with
compressibility cap (MC-CAP)

Nb: 17

Paraml = E Paraml13 =k,
Param?2 =V Param14 = ¢,
Param3 = C Param15 = k5
Param4 =@ (° Param16 = ky4
Param5 = (°) Param17 = €’

Param6 = ¢’
Param7 :GOM
Param8 = ¢g
Param9 = a4
Param10 = a»
Paraml1 = a3
Param12 = k;

Fracsima - 2016 www.fracsima.com




DISROC Materials’ Catalogue 30

31130 : Viscoelastic isotropic material : Iinear
elasticity and Norton-Hoff creep law

£=g'+¢"

. I+v. v . v 3 aae S

£ = 6-—tr(6)o, &€ ==a —
- B (6) 5 3 Eo

e

with:

ij °

. 1 . .
S stress deviator, S; =0, _go-kké" Mises equivalent stress 0, =,/3J,, J, =%SUSU

. 1/
¢=(a<o,-0,>")"
where, the positive part function <> is defined as:
<x>=0 if x<0
<x>=x if x=0
To avoid numerical problems near § = 0, the law is completed by:

W _ 3 aa: S .

¢ :EGSO 't 0—6 if £%< g
If a =1, the Norton-Hoff creep model is recovered. For a uniaxial stress the Lemaitre creep
law is found: g(r)=a(o-0,) 1°

The four parameters a, n, 0, O, can thus be identified from uniaxial creep results.

Nb=7

Paraml = E

Param2 =v

Param3 =a (attention to the stress and time unities)
Param4 = n

Param5 = a

Param6 = g,

Param7 = &

Internal Variables:
Vin(n,1): reserved for damage (not existing for this material)

Vin(n,2) : &, internal

31130 Linear Isotropic Elasticity with Lemaitre-
Norton-Hoff Creep law

Nb:7

Paraml = E

Param2 =v

Param3 =a (attention to the stress and time unities)

Param4 =n

Param5 = a

Param6 = o,

Param7 = g
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31140 : Viscoplastic isotropic material : Linear
Elasticity & Associate Plasticity with Mises
criterion and Kinematic + isotropic hardening &
Lemaitre viscoelasticity

Total strain: g=¢ +¢P +¢"
.. +
Elasticity: £¢ = ! Ev G- %tr((s) o,

Plasticity: sp:)'\a_F if F<0 then A=0
06 if F=0 then A20, F<0, AF =0

with: F(0,X,R)=J,(0-X)-K

1. . 1
J,(6-X) :ESijSij’ Szj =0; _Xij _E(O-kk _ka)éij (Xi=0)
_ ~bp S — ZSP.SP
K—K0+K1(1—e ) p=y3¢"
X=X1+Xz, XIZCI ep_d1pX1’ X2:C2 sp_dszZ’

For the initial state of the material, p=0 and X7 = X, =0.

Viscous deformation: g =

0| W

o EG—IE i
oe

. . . 1
with: Mises equivalent stress o, = iS S, S.=0,--0,0

i~ ij ij 3 kk ~ij
B n 1/a
E=(a<oe—cc > )
Where O, is a stress threshold and <> represents the positive part function:
<x>=0 if x<0
<x>=x if x>0

To avoid numerical problems near ¢ = 0, the law is completed by: &' = %G sg‘lé S if
O-L‘

< g

For a uniaxial stress the creep law becomes (Lemaitre creep law with stress threshold):
g(r)=a{o-0,)"t

[o}

The four parameters a, n, 0, O, can thus be identified from uniaxial creep results.

If a =1, the Norton-Hoff creep model is recovered: €' = %a <Ge —0C>n S
O-E

Number of parameters 14:
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Nb=14
Paraml = E
Param2 =v
Param3 = Kj
Param4 = K
Param5 =b
Param6 = ¢;
Param7 = d;
Param8 = ¢,

Param9 = d»
Paraml0 =a
Paramll =n
Paraml2 = a

Param13 = o,
Param14 = g

(attention to the stress and time unities)

Internal Variables: 9
Vin(n,1): reserved for damage (not existing for this material)

Vin(n,2) : Vin(n,3), Vin(n,4): X', X', X'y,
Vin(n,5) : Vin(n,6), Vin(n,7): X°p,, X° X

Vin(n,8) : p

Vin(n,9) : &, internal

X=X o X'y
X=X X2
2= XX yy

32

31140

Nb: 14
Paraml = FE
Param2 =v
Param3 = Kj
Param4 = K;
Param5 = b
Param6 = ¢;
Param7 = d;
Param8 = ¢,

Param9 = d»
Param10 =a

Lemaitre-Chaboche Elastic-Plastic with
Lemaitre-Norton-Hoff Creep

Paramll =n
Paraml12 = a
Param13 = g,
Param14 =g,
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31200 : Linear Elasticity with General Anisotropy

In 2D plane problems, €;3= &3= 013= 0,3=0, and the Hook law reduces to :

Op 1 C3 Cg || &
On | _ Cxn €3 G| | Ex
O33 C3 C36 | | €33
Op Co6 | | 2812

The elastic parameters, in the more general case of anisotropy are the 10 followings:

Nb =10

Paraml = ¢;;, Param2 = c¢;», Param3 = ¢;3, Param4 = ¢y,
Param5 = ¢;,, Param6 = c¢,3, Param7 = ¢y,

Param® = ¢33, Param9 = c3s,

Param10= cg4

31200 Linear Elasticity with
General Anisotropy

Nb: 10

Paraml = ¢y,

Param?2 = ¢,

Param3 = ¢;3

Param4 = ¢4

Param5 = ¢,

Param6 = ¢3

Param7 = ¢4

Param8 = ¢33

Param9 = c34

Param10= cg4
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31300 : Linear elasticity with Saint Venant anisotropy

The Saint Venant ellipsoidal material (Pouya 2007) is a 3D anisotropic material depends on
four parameters, three Young’s modulus (£, E,, E3) and Poisson ration V.

The basic assumption is that the Young’s modulus in different directions varies in special way
making that indicator surface of its fourth root is a spheroid. The tensor s and ¢ defined by:

A

Xon X2

fH

— .
[~
€

K
YT

il

Oy, h S CG3 G € € S S Sz Sis | | On

0y, — |2 Cn Cn O 2 € — [ S2 Sn S Sy 0y,
,

O35 C3 Gy Cy3 Oy €5 €33 Si30 83 Sz S | | Os3

Oy, Co Cx G Coo ] |26 2e,, St S S Ses ] | O

2(1+v)

2(1+v)
EIEZ
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1

c e —
(1+Vv)(1-2v)

'1-v)E, vJEE, v.\EE,
VWWJEE, (1-V)E, V.E,E,
VWWJEE, VJEE, (1-V)E,

1-2v T E

273

1-2v

35

EE

13

1-2v
2 EIEZ

If two elastic modulus are equal, for instance E;=F3, then a special case of transverse isotropy
around the x;—axis is found (Figure) depending on only three parameters (E}, E», V).

The model can include a rotation w of X,-axis, representing the direction with the Young’s
modulus E,, with respect to the x,-axis in the plane of calculation (x;,x;). Note that the out-of-
plane modulus E3 will be equal to Ej.

Nb=5
Paraml = E,
Param?2 = E,
Param3 = E;
Param4 = v

Param5 = w (in degrees)

31300 Linear Elasticity with Saint Venant
Ellipsoidal Anisotropy

Nb:5

Paraml = E;

Param2 = E,

Param3 = FE;

Param4 = v

Param5 = w (in degrees)
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31400 : Linear elasticity with transverse 1sotropy

The elasticity of the material has axial symmetry around the X5-axis. The axial Young’s
modulus is E, and the transverse one is E;. The elastic tensor is defined by five independent
parameters E;, E>, V12, V13, M1z with the following complementary conditions:

E3=E|,V3» =V, V31=V13,

The constitutive equation in a coordinate system with x,-axis superposed to the axis of
symmetry X, reads :

A
) i X, X2
i Vi, TV 0
E, E, E, E
€ Vi i Vi 0 0, 2 E
€y | _ 1 E, E, 0, hl ® X
= , |
€33 Vi TV i 0 O3 AN 0
2¢,, | : E, o, , ‘. E,
1 / W
0 0 0 —_— >
Mo | X1

The model can include a rotation w of X, with respect to the x,-axis in the plane of calculation
(x1,x2). Note that the out-of-plane modulus E5 will be equal to E|.

Note that the Young’s modulus in a direction in the radial plane (X, X>) and making an angle
0 with X; (see the figure) is given by:
4 s 4
1 _cos"O + (L_ 2\)'2)0052 Osin2 0 + Sl 0
Ee El u 12 El E2

For identification of the parameters from test data, note that a coefficient v, different from
V12 could be defined for this material satisfying the symmetry condition:

Vo Vi

E2 El
The coefficient V,; can be measured in the following way: a uniaxial compression Oj; is
applied in the direction X, and the strains €;; and &;; are measured respectively in axial and
radial directions X; and X;. Then V,;=- €;1/&, and v, is obtained from the above symmetry
condition. It would be possible also to apply the uniaxial compression 0, in direction X; and
measure the strains £;; and €, in directions X; and X,. The problem in this case has not axial
symmetry. But we get directly Vi, = - £5,/€;. No difference is to be considered for v3; and V3.

Nb=6
Paraml = E;
Param?2 = E,

Param3 = v,
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Param4 = vi3
Param5 =

Param6 = w (in degrees)

37

31400 Linear Elasticity with Transverse Isotropy
Nb: 6

Paraml = E;

Param?2 = E,

Param3 = v,
Param4 = vi3
Param5 = [,
Param6 = w (in degrees)
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31410 : Linear elasticity with transverse 1Sotropy +
Drucker-Prager plastic criterion
&= il

F(0)=\J, +VI,-K

Elasticity : the same model than 31400 : transverse isotropy
Plasticity : the same model than 31110 : Drucker-Prager

Nb=28
Paraml = E;
Param?2 = E,

Param3 = v,

Param4 = v

Param5 =

Param6 = w (in degrees)
Param7 = K

Param8 = sina

31410 Linear Elasticity with Transverse Isotropy
and Drucker-Prager Plastic Criterion

Nb: 8
Paraml = E;
Param?2 = E,

Param3 = v,

Param4 = v

Param5 =

Param6 = w (in degrees)
Param7 = K

Param8 = sina
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31430 : ANELVIP: Anisotropic elasto-viscoplastic

material : Transverse Isotropic elasticity,

anisotropic Mohr-Coulomb or Drucker-Prager

plasticity and Lemaitre creep law

This elasto-visco-plastic material has axial
symmetry around an axis related to the material X, X2
and designated by X, (Figure). This material
axis can make an angle w with the x,-axis of
coordinate system. The elastic behavior
corresponds to the general transverse isotropic
material around the axis X, of the material with
five independent parameters. The anisotropic
plastic and viscous deformations of the material

E>

are defined by a linear transformation from
isotropic plastic and viscous deformation
models. They have also transverse isotropy
around the axis X,. \

Constitutive model:

Elasticity: g=C"06

Plasticity: & =A — | A=0if F(0)<0

Creep: g = %u golg =

With C the elastic tensor with transverse isotropy, F anisotropic Mohr-Coulomb (traction

39

(1.1)
(1.2)

(1.3)

(1.4)

truncated) or Drucker-Prager criterion and non-associated potential G and anisotropic
Norton-Lemaitre creep law with stress threshold obtained by transformation of isotropic
material. The creep part or the plastic part of the model can be excluded to obtain a simple

elastoplastic or a simple viscoelastic model.

Transformation

The material is supposed to be transverse isotropic with the axis of isotropy lying in the plane

of modeling (x;, x,). This axis is represented by X; in the figure.

The direction dependency of the strain rate and of the stress threshold for plastic and viscous
strain is defined by introducing a transformed & obtained by as a linear function of @. This

transformation is defined in the following way in the (X, X») coordinates:

Fracsima - 2016 www.fracsima.com




DISROC Materials’ Catalogue 40

Oyw Oy 0 Oxx f O0xy 0
0=|0yxy Oy 0|-0= fTGXY fNGYY 0 (1-5)
0 0 o 0 0 6]

- A uniaxial stress in direction X, or any direction perpendicular to X; is not changed
(X, remains an axis of symmetry)

- A uniaxial stress 0 in direction X, is changed in a uniaxial stress f, O

- A pure shear stress T in direction XX, is changed in a pure shear stress fr T in the
same direction.

We put:

In=1+ay s S =Nt (1.6)

The constants ayand by are considered as two material’s parameters describing its anisotropy.
We note also:

fr=1+ar (1.7)
with the following relations:

a, =1+a, +b, 1, b, =f}=fy=a,(2+a,)-a, (1.8)

We note &” the transformed stress @ obtained with the parameters (a), a’) and &'

obtained with (a, , a;).

We note § and G, the deviator stress and Mises equivalent stress associated to & and define:

o

B=— (1.9)
o

For a uniaxial stress in the direction 6 with respect to the x;, the ratio (3 has the following
expression:

B(0) = \/(1+aN sin’ 6)2 +3b, sin> Bcos” 0 (1.10)
Where:
8=0-w (1.11)

The transformation applied to the viscous strain €=[" € allows making the creep law
anisotropic (Figure). But note that a uniaxial stress 0 in a direction 8 different of w is not

transformed to a uniaxial stress and so different 3 rations are obtained for UCS or for the
creep rate as it will be seen below.

I) Elasticity

The elastic behavior has axial symmetry or the transverse isotropy around the axis X; (see the
figure). The Young’s modulus in direction X; is E; and in directions X; and X3 (out of plane),
equal to E;. The three other parameters are the Poisson’s ratios Vi, and Vi3 and the shear
modulus U;,. The elastic model here is exactly the same that the model 31400 with the five
parameters (Ej, E», V12, Vi3, Hi2) and the angle w between the axis of symmetry X, and the
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coordinate axis x,. See the material 31400 for the method of identification of parameters and
the Young’s modulus in different directions of the material.

II) Plastic deformation

The plastic deformation is defined by the plastic criterion F and the plastic potential G with
the following relations:

F(@)=F@"), G(0)=G(&") (1.12)
Where the transformed stress 67 is deduced from @ with the set of parameters (ay, , a; ) . The
plastic yield rule reads:

F(0)<0, e =i %6 (1.13)

0o

with the standard conditions for A: A=0, and A=0if F(0)<O0.

The criterion F and potential G are the Mohr-Coulomb or Drucker-Prager according to the
11" variable Option:

Option 0: Mohr-Coulomb Criterion

If Option =0, F and G are the Mohr-Coulomb criterion and non-associate potential for the
parameters C, @, U and 07 (see the model 31120).

5° -7 &7 +3°
F(a-p):01203 +01 O3

AP — &P AP AP
01 0-'5 +01 +03

sin@—Ccos® < 0 (1.14)

G(&") = siny (1.15)

The Uniaxial Compressive Strength is then given by:

R ()=— L __2Ccos® (1.16)
Bch(e) 1-sin@
Where:
If f7>fy,or br>0:
_ 1+a,sin’ 0 2+4b sin”Bcos? 8 —(1+a, sin” B)sin @
Bucs(e)J( o) GEALL) (1.17)

1-sin@
If f7<fy,,or br<0:

Bues (5) = %(1 +a, sin’> 0 +\/((1 +a, sin’ é))2 +4b, sin” Bcos’ O ] (1.18)

For the special case f;’ = f, , or by= 0, one finds:

br=0 - Bues (é):1+aN sin’ 0 (1.19)

This allows defining the adequate anisotropic UCS for a variety of rock-type materials. Two
examples are given in the figures below for a rock with a weak anisotropy of UCS and a
jointed rock with high UCS anisotropy.
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Note that in all cases By (0) =1, By (T1/2) = f, and this allows determining fy or ay. Then

fr or by can be determined or by considering the strength reduction in another direction, and
instance in the direction 6=w +174.

Example 1 : Rock with weak anisotropy

Consider a bedded or schistose rock with bedding plane making and angle w with the x;-axis
of coordinates. Suppose that triaxial tests for compression axis parallel to the bedding plane
have determined the cohesion C and friction angle ¢ so that the UCS in direction parallel to
2Ccos@
1—sin@
measured in the direction perpendicular to the bedding plane:

m_1
R(,(oo+5) = BRL_(Q))

the bedding plane is R (w) = . Then suppose that a UCS different with a factor 1/B is

Then, we can take af =f3—1 and b’ =0 to obtain an ellipsoidal shape of UCS in different
directions for this rock (see Figure below left).

Example 2 : Jointed Rock
Consider a sedimentary or fractured rock mass with weakness planes making and angle w
with the x;-axis of coordinates. Suppose that the strength criterion of the weakness planes or
rock joints be given by a cohesion ¢/ and friction angle ¢ :
lt|=0, tang’ +c’ (1.20)

Generally in this case the strength criterion of intact rock is assumed isotropic but in order to
write a more general relation, we assume the UCS of the intact rock in the jointing direction is
(14+ay) time the strength in the perpendicular direction, with the possibility of taking ay =0 for
the isotropic intact rock matrix. The parameter bt can be determined by considering the UCS
in the direction making Tv4 with the jointing plane. In this case we have 8 =11/4 and on the
joint plane we have:

T1=0sinBcos6=0/2, 0,=0sin0=0/2

o j
lt|=0,tan¢/ +c’ - g=—2¢
1-tan @’
So the expected compressive strength for 8 = 11/ 4 is given by:
j
R (/d)=—2 1.21)
1—tan @’

Note that the expected R.(Tt/4) can result from theoretical calculation (1.21) or from

experiment by testing samples oriented 174 to the jointing plane. The compressive strength in
the direction parallel to the jointing plane (8 = 0) is that of the intact rock and given by

R (0)= 2€C0s@ (1.22)
1-sin@
Then we note:
lrjvcf _ R.(0) _ 2Ccos@/(1—-sin @) (1.23)

R(T/4)  2¢//(1-tan@)
The strength of the jointed rock in direction 8 =Tt/ 41is in principle smaller than that of the
intact rock and so By should be greater than 1 and then equation (1.17) with b7 >0 must be
considered. For 8 =11/ 4 this equation provides:
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J(1+ay12)’ +b, =(1+ay /12)sing

T/ 4)= 1.24
Bucs (0/4) sing (1.24)
By solving the equation B, (T1/4) =Y one finds:
b, = [( ;Cj)z ~(1+ay 12)" = (B ~(1+a, /2))2 sin (p}(l—sin o) (1.25)
And for the simple case of isotropic intact rock (ay=0, fx=1):
b, :[( v ) —1-(BLs —1)2sin(p} (1-sin @) (1.26)
See an example of the UCS of this type of jointed rock in the figure below right.
X2 AX2
X5 r X2 n
1/ \ S — 1/ \
: \w I| r/ \Q]j/;
X 7 X
(a) ()

Figure: Different cases of UCS anisotropy: (a) Weak anisotropy for rock matrix: w=18°, al =04, b7 =0 and
(b) anisotropic UCS for a jointed rock: w=18°, al =04, bl =15

Also the criterion is truncated by the traction limit O7 (see the material 31120). Note the

transformed stress @7 will be compared to 07 and so the tensile strength will be anisotropic in
the same way that the plastic criterion.

Options 1,2,3 : Drucker-Prager Criterion

If Option=1,2,3 F and G are the Drucker-Prager criterion and non-associate potential for
the parameters K, 0y and 0y defined as follows:

. 2si
sinal, __2smd o
3—-siny

6C cos @ Gino. = 2sin @

Option =1: External corners: K= - 0 — >
3-sin@ 3-sin@
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2si 2si
Option =2: Internal corners: K= 6Ccos@ C?S (P’ 0= —s1r‘1 ¢ , sina, = —Sn‘l Y (1.28)
3+sin@ 3+sin@ 3+siny
Option =3: Tangent to faces: K = _3Ccosp sind, = LU ,sin0, = siny (1.29)

\/3+sin2(p’ ¢ 3+sin’ @ v \3+sin* Y

Equivalent Drucker-Prager parameters for Mohr-Coulomb: Option 1: circle
passing by external corners (green circle), Option 2: passing by internal corners
(red circle), Option 3: tangent to faces (dashed-line circle).

F is Drucker-Prager criterion calculated with the transformed stress ¢ and the parameters K,

O¢ and G is the plastic potential with a different dilatancy angle oy, :

F(0)=F(6")=6" +sina,I"-K ,  G(0)=G(6")=06" +sina, I” (1.30)
0’ and I” are the equivalent stress and the first invariant associated to ”:

For Drucker-Prager case (options 1,2,3), the tensile strength truncation o7 will not be taken
into account.

Option 4 : Plane Mohr-Coulomb Criterion

If Option =4 F and G are the Plane Mohr-Coulomb criterion and non-associate potential for
the parameters C, @, U and 07 (see the model 31120). In Plane Mohr-Coulomb (PMC)
criterion, the out-of-plane stress is not considered or, equivalently, is supposed to be the
intermediate principal stress. The extreme principal stresses are deduced from the stress
components (Oyy, Oy, Oxy):

2
2
Cxx +0yy +\/(0xx _0-)7)’) +40xy

2 (1.31)
2
_ 0, *0,, —\/(o“ —0”) +407,

And with these stresses, calculated from the transformed stress tensor, the criterion F and
plastic potential G are the same that (1.14) and (1.15) for the Mohr-Coulomb option.
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The tensile strength truncation Or is taken into account in this PMC material.

Softening plasticity

The cohesion C, the tensile strength 07 and the angle @ in the here-above relations can vary
with the plastic shear strain y. The evolution is given by the hardening law (including
softening as negative hardening) depending on three additional parameters: the residual
cohesion C,, the residual friction angle @. and the brittleness parameter B. Two parameters of
cohesion and tensile strength reduction N. and friction angle reduction Ny are defined as
follows:
_tan@,
tan @
C; is the initial or intact cohesion, O7; the initial tensile strength and @ the initial friction angle
which are constant parameters of the material. For simplicity of notation, they are designated
by C, @and Oy in the list of parameters below (Param7, Param8 and Param10).

C,_, o
r=1-—L, n,=1
Ci 0-Ti r](p

n. =1- (1.32)

The cumulated plastic strain Yy includes contributions from the plastic shear strain and from
the plastic extension. Irreversible shear can degrade the cohesion of the material. Positive
values of diagonal components of the plastic strain, representing extensional deformation
created by tensile stresses, can also contribute to decohesion of the material. So yincludes two
types of contributions and it affects also the cohesion C of the material as well as it tensile
strength Or. It is calculated in the following way:

ot

2

The shear contribution part Y, is calculated from the deviatoric plastic strain increment ¢” by

(1.33)

the following relations:

Y, = ge” -e? el =¢’f —%856, 8{,7 =£’:0 (1.34)

The traction part Y, is calculated from the positive eigenvalues of the plastic strain rate

tensor. The three eigenvalues are €, and the two in-plane values:

2 2 2 2
94 &~ P P P <4 &~ P &~ P P P <4
_ 811 +€22 +\/(811 822) +4(£12) ép _ 811 +£22 +\/(811 822) +4(£12)

E ) 1.35
> 5 (1.35)
And Y, is the sum of the positive values of these eigenstrains:
el +ler| er+ler| en+fen)
VARS + + 1.36
Yr > > 5 (1.36)
It can be noted that for a:
0 ¢, 0
Simple shear: £” =|£2, 0 0|V, :i\sg v, =[], - y:[1+ij\é{;\ (1.37)
0 0 O ERE ' 2 V3

And if the plastic strain is traceless (#r€” = 0) then for uniaxial traction or compression:
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& 0 0
=10 -¢g/2 0 (1.38)
0 0 —£0 /2
Then for:
Simple traction: &>0- vy =€, V. =& - Y=¢ (1.39)

Simple compression: £/, <0 - Yy =

“p
8ll

“p
811

A = T
The evolution of C, ¢ and the tensile strength 07 in ANELVIP is calculated in a general way
by:

cy=(1-v.)¢ . om=01-V)o,. tan@y=(1-V,)tang (141

where V. , Vr and V, are internal variables of the material. Theses internal variables are
calculated from the cumulated plastic strain y by the following relations:

V. En (1= =Mye™),  Viy=n (1=e™), Vi =n(l-e™)  (1.42)

B is a positive parameter characterizing the brittleness of the material: the decrease of the
strength parameters C, @ and Oy is faster for greater B. The friction angle and the tensile
strength can only decrease whereas the cohesion evolution depending on the parameter M,
and so the compression curve, can present a positive hardening phase and a peak value.

If M < B, the cohesion C(Y) is always decreasing, but if M > B then C(y) starts by increasing
and attains, for a cumulated shear denoted by Y., a maximum value denoted by C,... These
values can be determined by derivation of the first relation in (1.42) and one finds:

_l-g . n,
ypeak _g_ ’ Cpeak - |:1 rlc +@:| Ci (143)

B

where: =— 1.44
8=, (1.44)
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45 — nc,ne,BM —
—(1)0,0,0,0
40 (4)
—(2)0.3,0,100,0
35

——(3) 0.3, 0, 100, 200

(3)
30
/f\\\\\\ ——(4)0.3,0, 80, 400
25

i / \\\ m\m S —(5) 03, 0.4, 60,0
15 / (5)
o/

/ E=1000, C=7, @=40° - UCS=30

0.00 0.02 0.04 0.06 0.08 0.10 €

Figure: Stress-Strain curves for a uniaxial compression test on Anelvip elastoplastic material
with different softening parameters.

The perfect plastic material is obtained by posing N.=n¢g0. In this case no evolution is
calculated for C, @ and Ot and B is not used.

Note: The softening behavior leads to localization and mechanical instabilities which can well
be modeled in Disroc with this Anelvip model. The localization in a sample affects its
nominal stress-strain curve. The curves in the figure above are obtained on a FEM model with
one only (quadrilateral) element in order to avoid localization effects.

Determination of softening parameters

The two equations (1.43) and (1.44) allow determining the two parameters B and M from Y)eu
and C. values given by the experimental curves.

However, different methods can be used to determine these two parameters depending on
which aspect of experimental curves is more important to reproduce more accurately.

A first method could be to determine B from the variation of C if pure shear test data are
available or from the variation of Oy if simple traction curves are available. This can happen if
numerical homogenization test data are being analyzed. After B is determined it is easier to
determine M from (1.43), (1.44) and Yj.. value (see below for estimation of Ypeax).

If only simple compression test data are considered for determination of B and M then
different methods can be used. For instance, let 0; designate the elastic stress limit (the end of
the elastic stage) and 0. for the maximum stress (Figure) and suppose that the friction angle
remains constant (Ng=0). From the relation between the UCS and the cohesion, R.=2Ccos@/(1-
sin(), one finds:
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C o)
eak __ eak
_peak _  peak (1.45)
C, o,
Iy
o o-peak
/l'
aal
I, :
Oi / |
—————————————— / |
’ 1
7 1
’ 1
’ 1
/I :
/, !
/ 1
/~.,‘.E !
’ ) 1
’ H
St :
/ 1
’ 1
’ 1
’ 1
/, !
4 e .
/S € peak '
’ 1
[ ——— 5
Ypeak Epeak €

Figure: Determination of V.. and Op.q« from experimental curves

Also, if the axial strain at the peak stress is €,¢4 then:

Ypeak = Epeak - Gpeak/ E (146)

Note that this relation is valid only for a uniaxial compression with monotonic loading and
with E the Young’s modulus in the compression direction. In addition, this relation supposes a
constant friction angle and also the expression (1.38) of the traceless plastic strain. These
assumptions are not always satisfied and specially the last one, (1.38), is not true for Mohr-
Coulomb and Drucker-Parger criteria with associate flow rule. In these cases, the equations
(1.45) and (1.46) must be considered as approximate relations allowing to determine a first
trial set of values for B and M and then determine more accurate values for these parameters
by numerical simulation of theoretical curves and comparison to the experimental ones.

From the equation (1.43) one can deduce:
UESTS (1.47)
Cpeak - Ci + ncCi
The value of the expression at the left side of (1.47) can be determined from experimental

data. But this equation can not be solved explicitly to determine g. The following figure
allows finding g from the left-side value of (1.47).

Fracsima - 2016 www.fracsima.com




DISROC Materials’ Catalogue 49

1
09 -+ Y T
0.8
0.7 +
0.6 -
05 +
0.4 -

03

0L +f -
X
o !

0 0102 03 04 0506 07 08 09 1

Figure: The function allowing to determine g

Once g has been determined, B and M can be determined from Y. by:

p=17¢  y-1-¢ (1.48)
Y pear 8 Y pear

However, as mentioned here above the determination of Y., is not easy in the general case.
It can be determined by an iterative method:
First, with starting with the value given by (1.46), a first estimate for B and M is determined
by (1.48). Then the theoretical curve obtained by these parameters is compared to the
experimental one. The €,.. is easily determined from the experimental curve. Ypes and €peax
vary in the same way. So if the theoretical €4 is smaller than the experimental one, a greater
value for Yj.q is adopted to determine new values for B and M. The process is repeated until
sufficiently precise values are determined for these parameters.

II) Viscous deformation

An anisotropic extension of the isotropic creep law can be defined by making anisotropic both

the strain rate and the stress threshold with two different sets of ay and ar denoted by
(ay , a;) for viscous set and (ay , a;) for plastic model or stress threshold: viscous strain

rate will be multiplied by " and the stress threshold divided by B” (Figure).
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X2
X5 n

Xfi
/ \\ [ X,

f / X1

Indicator surface of 1/B” Indicator surface of "

If the uniaxial stress Og is applied in a direction making an angle 8 with respect X; then the
axial creep strain €g measured in this direction is assumed to be:

g,(t) = aB'(8) <P’ (B)0, — G >" 1 (1.49)

where a, n, 0, 0. are four material constants, 3(8) and [3’(6) two direction dependency
coefficients for the stain rate and the stress threshold and the positive part function <> is
defined as:

<x>=0 if x<0

<x>=x if x>0

The four parameters a, n, 0, O, can be identified from uniaxial creep results If a =1, the
Norton-Hoff creep model is recovered.

The incremental constitutive equation for creep function (1.49) is written by introducing the
auxiliary parameter § and the transformed stresses 67, &, S with:

t=(ap <0’ -0,>")" (1.50)
w3 ez S
And g =ag"t — (1.51)
2 0,
To avoid numerical problems near § = 0, the law is completed by:
g :Eo( g — if &< g (1.52)

e

Thus an additional parameter &g is introduced. The transformed stresses G, SY ,0) are
defined by transformation with (a, , a,) =(a, , a;). The viscosity anisotropy parameter [3 is

defined by the same expression (1.9),(1.10) but with parameters (a,, , a,):

Fracsima - 2016 www.fracsima.com




DISROC Materials’ Catalogue 51

&
B === (1.53)
(0)

e

The transformed stresses &7, S”, 07 are defined by transformation with (a, , a,) =(ay, a’)

Thus, the anisotropy is defined by two sets of parameters (a, , a,) and. (ay, a;).

Note that if the stress threshold 0, is greater than plastic strength then no viscous strain will
be produced because the stress remaining in the elastic domain defined by the plastic criterion
cannot exceed O,.

Nb =24
Paraml = E;
Param?2 = E,

Param3 = v,

Param4 = v3

Param5 = U,

Param6 = w (in degrees)

Param7 = C (C; if evolution)

Param8 = @ (in degrees)

Param9 = Y (in degrees)

Param10 = o7

Param11 = Mohr-Coulomb/Drucker-Prager Option) (MC:0, DPe:1, DPi:2, DPf:3, PMC:4)
Param12 = d’y

Param13 = b’

Param14 =a (attention to the stress and time units)
Paraml15 =n

Param16 = a

Paraml17 = o,

Paraml8 = a'y

Param19 = b'r

Param?20 = &

Param21 =n, (cohesion reduction)

Param22 =1y (friction angle reduction)
Param23 = B (plasticity brittleness)

Param24 =M (positive hardening parameter)

Note

e If C > 10E; no plastic strain will be calculated (the model becomes viscoelastic). The
parameters 6, 7 and 11 have no effects. But ¢’y and a7 can be used for viscous strain.

e If a =0, no viscous strain will be calculated (the model becomes elastoplastic). The
parameters 13 to 18 will not be used.

* If N.=N=0 no hardening or softening evolution for C et ¢ and B is not used.

Internal Variables:
Vin(n,1): reserved for damage (not existing for this material)
Vin(n,2) : €, internal
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Vin(n,3): Plastic shear deformation y
Vin(n,4) : Reduction factor for cohesion, V.
Vin(n,5) : Reduction factor for friction angle, Vy

Vin(n,6) : Reduction factor for tensile strength, Vr

Fracsima - 2016
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31430 ANELVIP: Anisotropic ElastoViscoPlasticity
Mohr-Coul.(0)/Druck.-Prag.(1,2,3)+ Creep

Nb: 24
Paraml = E;
Param2 = E,

Param3 = v,

Param4 = V3

Param5 =

Param6 = w (in degrees)
Param7 = C

Param8 = @ (in degrees)
Param9 = U (in degrees)
Param10 = oy

Param11 =Option (01,2,3,4)
Param12 = d’y

Param13 = b’
Paraml14 = q
Paraml15 =n
Param16 = a
Paraml17 = o,
Param18 =a’y
Param19 = b'r
Param?20 = g,

Param21 =n,
Param22 =n
Param23 =B

Param24 =M
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31600 : Elastic-Damage material with modified
Drucker-Prager softening criterion

Note: Model to be developed. Not available!
Isotropic elasticity with damage:

ezt oV e)6
EQ-D)° E(-D)

Damage criterion:

F(0,D) =02 +b%g? +sina I, - gk
0,=43J,, I,=tr(0)

g(D)=n,+(1-n,)1-D)[1-BIn(1-D)], r],=0—’
0
(O 144
% / % o6 |
ot/ - CESRECEEEERR e b 0.4
€0 8' ° 0
Nb=7
Paraml = E
Param2 =v
Param3 = sin O
Param4 = K
Param5 =3
Param6 =n),
Param7 = b
Variable interne
Vin(n,1) : D
Condition : bcosa <K must be satisfied.
31600 Elastic-Damage material with modified
Drucker-Prager softening criterion
Nb: 7
Paraml = E
Param2 =v
Param3 = sin O
Param4 = K
Param5 =3
Param6 =n), Condition: bcosad <K
Param7 = b
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[.4) Mechanics - ANCHORS

41100 : Elastic Rock Anchor

Axial deformation of the anchor rod: ¢ = FbE_SFO Fb
F,, axial force in the rod,
Fy prestress axial force,

Elastic contact between rod and rock : ag=Ku

(the same model 21100)

Note: For the section S to take into account the same remarks that for bar elements (material
model 11100) are valid. The stiffness parameters K;, K, and K;, here take into account the
circumference of the steel rod as well as the number of anchors per unit thickness of the
model. For instance, if the grout filling the space between the rod and the rock has a thickness
e and a shear modulus p, then it correspond to a physical stiffness p/e (see the material
21100). Then if the rod has a diameter D then the Param2 = K; = TiD p/e. In addition, if in the
unit thickness of the plane of the model there are n anchors (see the note for the bar elements
11100), then Param2 = K, = n TiD p/e. The same method is to be applied to K, and K.

Nb=5

Paraml = ES (Young’s modulus (steel) x section)

Param?2 = K, (tangent stiffness)

Param3 = K, (normal stiffness)

Param4 = K,; = K;, (non diagonal stiffness term causing dilatancy)
Param5 = Fy (prestress force)

41100 Elastic Anchor

Nb: 5

Paraml = ES (Young’s modulus (steel) x section)
Param?2 = K, (tangent stiffness)

Param3 = K,, (normal stiffness)

Param4 = K, = K;, (non diagonal stiffness term causing
dilatancy)

Param5 = Fy (prestress force)
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41110 : Elastic-Plastic Rock Anchor

Axial deformation of the anchor rod: e—¢gf =

In monotonic loading €’ < 0 if F, < Y where:
Y, =0, S with 0y the plastic limit stress of the rod (steel) and S the rod section

Contact between rod and rock : o=K (u—u")
Plastic criterion for rod-rock contact: f(0) = |T| +0,tan@—-c<0

Contact model: the same that the model 21120

Nb=38

Paraml = ES (Young’s modulus (steel) X section)

Param?2 = K, (tangent stiffness)

Param3 = K,, (normal stiffness)

Param4 = K,; = K;, (non diagonal stiffness term causing dilatancy)
Param5 = Y, (plastic limit for the axial force in the anchor)

Param6 = C (cohesion)

Param7 = @ (in degrees, the friction angle)

Param8 = Fy (prestress force)

Note: The method of calculation of S, K,, K,,, K;, and Y; is the same that for materials 41100
et 11110. The cohesion parameter C is the product of the physical cohesion of the contact
between the rod and the rock (cohesion of the grout material) and the circumference of the
rod, and also the number of anchors per unit thickness of the plane model (see materials
41100 and 11100). The angle @ is the friction angle (in degrees) of the contact (or the grout
material).

41110 Elastic-Plastic Anchor

Nb: 8

Paraml = ES (Young’s modulus (steel) x section)
Param?2 = K, (tangent stiffness)

Param3 = K,, (normal stiffness)

Param4 = K,; = K;, (non diagonal stiffness — dilatancy)
Param5 = Y, (plastic limit for axial force in the anchor)
Param6 = C (cohesion)

Param7 = @ (in degrees, the friction angle)

Param8 = F; (prestress force)
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41310 : Elastic-Damage Rock Anchor

Axial deformation of the anchor rod: e—¢gf =

In monotonic loading €’ < 0 if F, < Y, where:
Y,=0,S with 0, the plastic limit stress of the rod (steel) and S the rod section
Contact between rod and rock :

o= Kp+k,)(u—-u")

KD:[(l—D)Kt 0}’ k,{k” 0} Ep:{u,”}
0 0 0

0 K,
Damage criterion for rod-rock contact: F(g, D) = |'[| -g(D)C
With: g(D)=(1-D)(1-BIn(1- D))

With:

The plastic deformation of the contact takes place after the complete damage. The plastic
criterion is:

Fr(o)= [1-C,
Note: The strength parameter takes into account, in the same way that C, the circumference of
the rod and the number of anchors per unit thickness of the model (see the model 41110).

Nb=9

Paraml = ES (Young’s modulus (steel) X section)
Param?2 = K, (tangent stiffness)

Param3 = K,, (normal stiffness)

Param4 = ¥; (plastic limit for the axial force in the rod)
Param5 = C (cohesion)

Param6 = C, (residual cohesion)

Param7 = 3 (ductility)

Param8 = k,, (residual tangent stiffness)

Param9 = Option (1 if plasticity taken into account)

Internal variable
Vin(n,1) : D
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41310 Elastic-Damage Anchor

Nb=9

Paraml = ES (Young’s modulus (steel) x section)
Param?2 = K; (tangent stiffness)

Param3 = K, (normal stiffness)

Param4 = Y; (plastic limit for the axial force in the rod)
Param5 = C (cohesion)

Param6 = C, (residual cohesion)

Param7 =3 (ductility)

Param8 = k,, (residual tangent stiffness)

Param9 = Option (1 if plasticity taken into account)
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51100 : Elastic Beam

The efforts in elastic beam are the axial force F, the shear force V and the bending moment M.
They are related to the axial strain € and the rotation 0 by:

F=ESe, M=EI d—e
ds
The shear force is related to M by V = -dM/dx where x designates the position x along the

beam.

Nb=2
Paraml = ES : Young’s modulus (steel) x S (section)
Param2 = EI : Young’s modulus (steel) X I (moment of inertia)

Note: The 2D plane modeling, a unit the thickness of the model is considered in relation with
a 3D modeling. The section S and the inertia moment / are supposed to correspond to a unit

thickness of the model. If there are more or less one beam per unit thickness, these parameters
must be multiplied by the number of beams by unit thickness (see for the bar element 11100).

51100 Elastic Beam

Nb: 2

Paraml = ES : Young’s modulus (steel) x S (section)

Param?2 = EI : Young’s modulus (steel) x I (moment of
inertia)
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61100 : Elastic Bolt (beam + contact interface)

Bolt is anchor element with bending and shear effects for the steel rod. The steel rod is
modeled as beam element and the contact between the rod and the rock, modeled by a joint
element.
The efforts in elastic beam are the axial force F, the shear force V and the bending moment M.
They are related to the axial strain € and the rotation 0 by:

F=ES¢e, M=EI d—e

ds

The shear force is related to M by V = -dM/dx where x designates the position x along the

beam (the same model 51100).

Elastic contact between rod and rock : g=Ku
(the same model 21100, 41100)

Nb=5

Paraml = ES Young’s modulus (steel) X section

Param2 = EI : Young’s modulus (steel) x

Param3 = K, (tangent stiffness)

Param4 = K,, (normal stiffness)

Param5 = K, = K;, (non diagonal stiffness term causing dilatancy)

Note: For the section S and the moment of iniertia to take into account the same remarks that
for bar elements.

61100 Elastic Bolt (beam + contact interface)

Nb: 5

Paraml = ES Young’s modulus (steel) x section
Param2 = EI : Young’s modulus (steel) x intertia
Param3 = K, (tangent stiffness)

Param4 = K,, (normal stiffness)

Param5 = K,; = K;, (non diagonal stiffness — dilatancy

61110 : Elastic Bolt with elastoplastic contact

Bolt is anchor element with bending and shear effects for the steel rod. The steel rod is
modeled as beam element and the contact between the rod and the rock, modeled by a Mohr-
Coulomb elastoplastic contact interface. This model is the extension of the model 61100 to
the plasticity of the interface or of the cable model 41110 to accounting for bending moment
but without plasticity of the steel rod and without pre-stress .

The efforts in elastic beam are the axial force F, the shear force V and the bending moment M.
They are related to the axial strain € and the rotation 6 by:
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F=ESe, M=EI d—e
ds
The shear force is related to M by V = -dM/dx where x designates the position x along the

beam (the same model 51100).

Contact between rod and rock : o=K@u—-u")
Plastic criterion for rod-rock contact: f(0) = |T| +0,tan@—-c<0

(the same model 21120, 41110)

Nb=5

Paraml = ES Young’s modulus (steel) x section

Param2 = EI : Young’s modulus (steel) x

Param3 = K, (tangent stiffness)

Param4 = K,, (normal stiffness)

Param5 = K,; = K;, (non diagonal stiffness term causing dilatancy)
Param6 = C (cohesion of the steel-rock contact)

Param7 = @ (in degrees, the friction angle of the contact)

Note: For the section S and the moment of inertia to take into account see the same remarks
that for bar elements. For the paremeters K;, K,, K, and the cohesion C see the same remark

that for the material 41110.

61110 Elastic Bolt (beam + contact interface)

Nb: 7

Paraml = ES Young’s modulus (steel) x section
Param2 = EI : Young’s modulus (steel) x inertia
Param3 = K, (tangent stiffness)

Param4 = K,, (normal stiffness)

Param5 = K,; = K;, (non diagonal stiffness — dilatancy
Param6 = C (cohesion)

Param7 = @ (in degrees, the friction angle)
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IT) Hydraulic

Hl) Hydraulic - BOREHOLES & TUBES

(associated hydraulic model for bars, beams, anchors and bolts)

12100 : Borehole : Steady state flow

The pressure in the borehole is the same that at its wall for the surrounding porous matrix.
This model is suitable for calculating steady state flow.

Constitutive law: qg=-C/Up

q : debit in the tube, [Up : fluid pressure gradient along the tube line
Nb=1
Param1 = C, (tangent or longitudinal conductivity)

Note: ¢ is the integral of the fluid velocity in the section of the tube (g = ve).

Tube elements are the hydraulic model associated to bar elements (Mechanics). If bar
elements are present in the mechanical model, they will be present also in the hydraulic mesh
and their hydraulic model must be specified. Put C,=0 if they have no contribution to
hydraulic flow.

12100 Borehole: Hydraulic model steady state
Nb: 1
Param1 = C, (tangent or longitudinal conductivity)

12110 : Borehole : Transient flow

The pressure in the borehole is the same that at its wall for the surrounding porous matrix.
This model allows calculating transient flow.
- : op _
Constitutive law: g=-C/Up, C, o U.(C.0p)
t

q : debit in the tube, [p : fluid pressure gradient along the tube line
Nb=2
Param1 = C, (tangent or longitudinal conductivity)
Param?2 = Cy; (storage coefficient)

Note: See the note for the material 12100
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12110 Borehole: transient flow

Nb: 2
Param1 = C,; (tangent or longitudinal conductivity)
Param?2 = Cy; (storage coefficient)

12200 : Tube : Steady state flow

The pressure inside the tube is different from the pressure on its outside wall for the
surrounding porous matrix. This model is suitable for calculating steady state flow.

Constitutive law: qg=-C,0P , 0O(cOP)+C,(p-P)=0
P : pressure inside the tube which can be different from the outside pressure
UP : fluid pressure gradient along the tube line
p : pressure outside the tube
q : debit in the tube, [p : fluid pressure gradient along the tube line

Nb =2
Param1 = C, (tube longitudinal conductivity)
Param?2 = C,, (wall-through conductivity, zero if impervious wall)

Note: For this model the pressure is continuous in the matrix when crossing the tube but
different from the pressure inside the tube.

12200 Tube : Hydraulic model for steady state
flow

Nb: 2
Param1 = C, (tube longitudinal conductivity)
Param2 = C, (wall-through conductivity)

12210 : Tube : Transient flow

The pressure inside the tube is different from the pressure on its outside wall for the
surrounding porous matrix. This model allows calculating transient flow.

Constitutive law: qg=-C/ 0P , C, (39_}; = D.(C,DP) +C, (P - P)

P : pressure inside the tube which can be different from the outside pressure
UP : fluid pressure gradient along the tube line
p : pressure outside the tube
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q : debit in the tube, [Up : fluid pressure gradient along the tube line

Nb=3

Param1 = C, (tube longitudinal conductivity)

Param2 = C,, (wall-through conductivity, zero if impervious wall)
Param3 = C); (storage coefficient)

Note: See the note for 12200.

12210 Tube : Hydraulic model for transient flow

Nb=3

Param1 = C, (tube longitudinal conductivity)
Param2 = C, (wall-through conductivity)
Param3 = C); (storage coefficient)
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H2) Hydraulic - ROCKJOINTS & FRACTURES

See the General Note 22210 at the end of this section explaining the parameters of interface
model for flow.

22100 : Hydraulic rock joint, infinite transverse
conductivity

Constitutive law: qg=-C;p

q : debit in the fracture, [p : fluid pressure gradient along the fracture line
Nb=1
Param1 = C, (tangent conductivity)

Note: Infinite transvers conductivity means that the pressure is the same on the two sides of
the fracture or joint element. If the joint is assimilated to a thin layer of thickness e of a
porous material with permeability k (see the material 32100), then the equivalent C, would be

» = ke and ¢ would represent the integral of velocity in the section (thickness) of the fracture

(g =ve).

22100 Hydraulic interface with infinite transverse
conductivity

Nb: 1

Param1 = C, (tangent conductivity)

22110 : Transient hydraulic flow in rock joint, infinite
transverse conductivity

Constitutive law: g=-C,0p, cC, g—p =0.(c,0p)
t
q : debit in the fracture, [p : fluid pressure gradient along the fracture line
Nb =2
Param1 = C, (tangent conductivity)
Param?2 = C); (storage coefficient)

Note: For the infinite transvers conductivity see the note for the material 22100
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22110 Hydraulic interface with infinite transverse
Conductivity, transient flow

Nb: 2
Param1 = C,; (tangent conductivity)
Param?2 = C); (storage coefficient)

22200 : Hydraulic flow in rock joint, finite transverse
conductivity

Constitutive law: gq=-C,0P, V =C,[p]

q : debit in the fracture, Up : fluid pressure gradient along the fracture line
V,.: The fluid velocity perpendicular to the interface. Its is the average value of
the normal fluid velocity in the matrix on the two sides of the joint element.
[p]: pressure discontinuity (jump) across the interface
Nb =2
Param1 = C, (tangent conductivity)
Param?2 = C, (transverse or normal conductivity)

Note: For this model the pressure is discontinuous across the fracture (pressure jump between
the two sides of the fracture). The only case with clear physical meaning is then the case
C,=0 for witch the fracture acts as a barrier to the flow perpendicular to its surface. The
variable P in ¢ = -C; [P represents the mean value of the pressure on the two sides, (p*+ p
)/2. The case C,=0 corresponds to an empty joint with no flow through it.

22200 Hydraulic interface with finite
transverse conductivity

Nb: 2
Param1 = C, (tangent conductivity)
Param?2 = C, (transverse or normal conductivity)

22210 : Transient hydraulic flow in rock joint, finite
transverse conductivity

Constitutive law: g=-C,0P, V =C, [[p]], Cc, aa—l; = D.(C,Dp)

q : debit in the fracture, [P : fluid pressure gradient along the fracture line
V,.: The fluid velocity perpendicular to the interface. Its is the average value of
the normal fluid velocity in the matrix on the two sides of the joint element.
[[ p]] : pressure discontinuity (jump) across the interface
Nb=3
Param1 = C, (tangent conductivity)
Param?2 = C, (transverse or normal conductivity)
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Param3 = C); (storage coefficient)

22210 Hydraulic interface with finite
transverse conductivity

Nb: 3

Param1 = C, (tangent conductivity)

Param?2 = C, (transverse or normal conductivity)
Param3 = C), (storage coefficient)

General Note 22210: If the joint element represents a thin layer of thickness e constituted of
porous material with permeability k and storage coefficient c,, then its tangent and normal
conductivities and storage coefficient Cy, are given respectively by:

C=ke, C,=kle, Cy=cpe
For the permeability k and the storage coefficient c,, of the bulk material see the note for the
material 32100.

The debit g corresponds to the integral of the fluid velocity on the layer section, and P is the
average pressure in the layers:

q:_[vde, P:éfpde

If the permeability is high and thickness small, there is continuity of pressure across the joint
element (no pressure difference between the two sides). In this case an infinite value of C, is
to be modelled. To avoid numerical problems, in this case a new model is defined in Disroc
(models 22100 and 22110) which implicitly supposes the pressure equality on the two sides
and does not need a C, value. On opposite, if C,= 0 then the interface acts as a barrier to the
flow perpendicular to its surface.

If the joint element represents an assemblage of several thin layers of bulk materials (three
layers in the figure) with which layer (i) having a thickness ¢ , a permeability k™ in the
direction parallel to the layer and k,” in the direction perpendicular to it and storage
coefficient c,n(i) , then the equivalent C; and C, for the joint element are given by:

. . 1 e(i) N
- E (D) 1, (D) — § - § @) (D)
Ct - e kt . C—— W . Cm - e 'c,
i i n i

n

+

p Vn+ A Cn

P Vi | ek k" > — g

2222222

P Vn~

Concerning the flow perpendicular to the fracture, we note that v," and v, are the flow in the
matrix perpendicular to the fracture and V,= (v, +v,)/2.
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I1.3) Hydraulic - BULK MATERIALS

32100 : Darcy flow with isotropic permeability

Constitutive law: v=-kp

v : fluid velocity in the porous material , [p : fluid pressure gradient vector

k is a conductivity parameter which is called “permeability” for simplicity. It is related to the
intrinsic permeability k;, and the Darcian permeability kp,., by the following relations:

k :ki = kDarcy
Mo Psg

Where u is the dynamic viscosity and py the specific mass of the fluid and g the gravitational
acceleration.

In SI system of units with v (m/s), ki, (mz), u (Pa.s), pr (Kg/m3), g (ms'z) and kparey (m/s),
the parameter £ is expressed in mZ/(Pa.s) or equivalently in (m/s)/(Pa/m).

Note that for water:

u=1.01x10" Pa.s Pwg = 9.81x10° Pa/m
So, if, for instance, a fluid with the relative density Yy is considered (fluid density Yy times
greater than water) and if the pressure is expressed in MPa, distances in m and the fluid
velocity in m/s, then we have pfg:y(9.81><10_3)MPa/m. Then the Disroc permeability
parameter k (mZ/MPa.s) have the following value function of kpgc, (m/s):

Darcy

1
y 9.81x107

Nb=1
Paraml =k (permeability)

32100 Darcy’s law with isotropic permeability

Nb: 1
Param1 = k (permeability)
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32110 : Transient Darcy flow with 1sotropic
permeability

Constitutive law: v=-klp , C, g—p =div(kUp)
t

v : fluid velocity in the porous material , [p : fluid pressure gradient vector

For the definition of the unit of k see the material 32100.
Cy has the dimension and the unit of the pressure p.

Nb=2
Param1 =k (permeability)
Param?2 = Cy; (storage coefficient)

32110 Transient Darcy flow with isotropic
permeability

Nb: 2
Paraml1 = k (permeability)
Param?2 = C); (storage coefficient)

32111 : Transient Darcy flow with evolving
permeability (GeliSol)

o K pare .
Constitutive law: v=—2k (S)O(p+y,z) » C,—=divy

M a —
k() =4S, (1-a-simy)

v : fluid velocity in the porous material ,

p : fluid pressure, 0(.) : gradient vector

Y : fluid (water) unit weight (= p,.g),

Cyu : Storage coefficient (= 1/M  with M the Biot Modulus for poroelastic material)
kparey : Darcy’s permeability

k. : relative permeability

m : positive constant parameter

Sy : Degree of saturation

Note 210519

Sy 1s calculated from the relation S)= 1- Vi”h where Vi"h 1s an internal variable which can be
given by the user in the User module in the array Vinh(n,1). For the material GeliSol, it is
automatically calculated from the freezing curve of the material which provides the degree of
saturation in liquid water, Sy function of the temperature.

Nb=4
Paraml = kp,., (permeability)
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Param?2 = C), (storage coefficient)
Param3 =V, (water unit weight)
Param4 = m

Inﬁernal variable:
V",(n,1): internal variable 1-S)

32111 Transient Darcy flow with evolving
Permeability (Gelisol)

Nb: 4

Param1 = kp,., (permeability)
Param?2 = C); (storage coefficient)
Param3 =V, (water unit weight)
Param4 = m

32200 : Darcy flow with anisotropic permeability

Constitutive law: v=-k[p,
v : fluid velocity in the porous material , Up : fluid pressure gradient vector

For the definition of the unit of k see the material 32100.

Nb=3

Paraml =k,
Param? =k,
Param3 = k,, = k,

32200 Darcy’s law with anisotropic permeability

Nb: 3

Paraml = k,,
Param?2 =k,
Param3 = k,, = k,

32210 : Transient Darcy flow with anisotropic
permeability
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Constitutive law: v=-klp, C, (;_p =div(kUp)
t

v : fluid velocity in the porous material , Up : fluid pressure gradient vector

For the definition of the unit of k see the material 32100.
Cy has the dimension and the unit of the pressure p.

Nb=4

Paraml1 = k,,

Param?2 =k,

Param3 = k., = k.

Param4 = Cy; (storage coefficient)

32210 Transient Darcy’s law with
anisotropic permeability

Nb: 4

Paraml = k,,

Param2 = ky,

Param3 = k., = k.

Param4 = Cy; (storage coefficient)

I1.4) Hydraulic 40000 Cables
— See 12200, 12210 Tubes

I1.5) Hydraulic 50000 Beams
— See 12100, 12110 Boreholes

I1.4) Hydraulic 60000 Bolts
— See 12200, 12210 Tubes
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III) Thermal

I11. 1) Thermal - WIRES & TUBES

(associated thermal model for bars, beams, anchors and bolts)

II1.2) Thermal - ROCKJOINTS & FRACTURES
II1.3) Thermal - BULK MATERIALS

33111 : Transient Heat flow with thawing (GeliSol)

Constitutive law of the material includes the equations of heat transport by thermal diffusion
(Fourier’s law) and by advection. In the interval of temperatures corresponding to the thawing
process, the liquid water content decreases because the water is transformed into ice (see the
figure). In these temperatures interval, the thermal capacity includes the latent heat of the
water to ice phase change L.

Jp,=-ANOT , J,=p,GTy, J=J,*J, 3.1

(pC” +p,L G (p)%—7; = div(A OT) - div (p, /) (3.2)
0S,(T)

G(T) = 222 33

(1) === 3-3)

T : temperature,

UT : temperature gradient,

J p: diffusive heat flow,

J a: advective heat flow,

A : thermal conductivity,

p : mass density (of the porous material, soil or rock),

C?” : specific heat capacity of the porous material (soil, rock) at constant pressure,
P : pore fluid (water) mass density,

C?’) : pore fluid (water) specific heat capacity,

@ : porosity,

L : latent heat of the ice—water phase change (heat needed for unit mass change),
S\(T) : liquid saturation degree at temperature 7'

New variables are defined for simplicity:
L, : volumetric latent heat of the water-ice phase change. L, = p) L where p, is the
water density and L the (specific) latent heat of the ice—water phase change
C,, : volumetric heat capacity of the liquid (water) C,j = pAC”\ where pj, is the
density and C”) the specific heat capacity at constant pressure of the liquid.
C,, : volumetric heat capacity of the unfrozen soil: C,, = pC” where p is the density
and C” the specific heat capacity at constant pressure of the soil at unfrozen state,
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C,s : volumetric heat capacity of the frozen soil: C, = pC” where p is the density and
C? the specific heat capacity at constant pressure of the soil at frozen state,
C,s : volumetric heat capacity of the partially frozen soil:
Ciu=5Cyu+ (I'S)\) Cvf

The heat conductivity varies also with the water content between the values corresponding to
the unfrozen and frozen states:
N\= S)\ /\u + (I—S)\) /\f

N\, : heat conductivity of the soil at unfrozen state,
/\s : heat conductivity of the soil at frozen state.

With these notations the equation (3.2) reads:

(C,+L G (p)%—f =div(\ .OT) - div(C,Ty) (3.4)

The evolution of S\ with temperature is deduced from the freezing curve of the soil, the
material data giving the evolution of the liquid water content in the soil at different
temperatures:

45

s 3 Dot : W, : unfrozen water content of the partially frozen soil
[ —&—Silt v

38 |—— o= | posgocelt W M4*: water content of the unfrozen soil

0k 4 5 4
?:;;25- 71 S (T _WC(T)
EZU' g ot )\( )_WMax

15 A s ¢

0} 11 G(T) = 95,(@)
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o
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Temperature (°C)

Variation of the water content with the temperature for different soils (Li er al., 2018)
Li, H., Yang, Z. J., and Wang, J. (2018). Unfrozen water content of permafrost during thawing by the capacitance technique. Cold Regions
Science and Technology, 152 :15-22.

Different options exist to define and introduce the function S)(7) in the model:

- If the parameter Option = 0 there is no thawing modeled.

- If the parameter Option = 1 then a simple model of thawing is considered:
S)\(T) varies linearly between T=T,,,,<0 and T=0 from Sx(T}nin)= Smin to Sx(0)=1. In this
case Ty and Sy, are given as parameter of the material (Param7, Paramg).

- If the parameter Option = 2, the thawing curve is defined in a file. The file is text file
called name.dat where name is the name of the material. This file has the following
format:

#Comments: the thawing curve for the material “Clay”
#The curve includes N points

Curve

N

T S
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T S

Ty Sy

The lines before the line starting by keyword ‘Curve’ are free comments. The line containing
just the keyword ‘Curve’ is mandatory. Then follows N, the number of points, and then N
lines containing the pair ‘7; S where 7; are increasing temperatures and S; the liquid water
contents with values between 0 and 1. Then the function S)(7) is built in the following way:

S\T)=S,if T< Ty,
Syvaries linearly from §; to Si4; for T; < T < Ty,
S\(D=Syif Ty <T

Un example of thawing curve file is given in the folder Tools, called thawing.dat.

S)\ ' N S)\ A
1 S :1 ¢ SN
Smin Sl \ i E
7-min 0 7_ 71 7-2 7; TN VT
Option 1: Curve defined by (T}in, Simin) Option 2: Curve defined by (73, S;) in a file

Figure : Two options of definition of the thawing curve

Note 210521:

The thawing curve S\(7) is a characteristic of the soil and an input of the model. From this
data, at each temperature, the Syis determined. This value is used by the hydraulic and
mechanical material models 32111 and 31121 (Gelisol) in order to express the effects of
thawing process on the hydraulic (permeability) and mechanical properties.

Nb =10

Paraml = A, : thermal conductivity of the unfrozen soil,

Param2 = /\¢: thermal conductivity of the frozen soil,

Param3 = C,, : volumetric heat capacity of the unfrozen soil,
Param4 = C,; : volumetric heat capacity of the frozen soil,

Param5 = C,): volumetric pore fluid (water) heat capacity,

Param6 = L, : volumetric latent heat of the water-ice phase change,
Param7 = @: porosity,

Param8 = Thawing Option for the definition of the thawing curve Sx(7),
Param9= T,

Param10= S,,;,

Inﬁernal variable:
V"1(n,1): internal variable 1-S\(7)
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33111 Transient heat flow with thawing (Gelisol)

Nb =10

Paraml = A, : unfrozen soil thermal conductivity,
Param2 = /\¢: frozen soil thermal conductivity,

Param3 = C,, : unfrozen soil volumetric heat capacity,
Param4 = C,;: frozen soil volumetric heat capacity,
Param5 = C,,: pore fluid (water) volumetric heat capacity,
Param6 =L, :water-ice phase change volumetric latent heat,
Param7 = @: porosity,

Param8 = Thawing Option (0,1,2)

Param9=T,,,

Param10=S,,;,
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IV) Custom Special Models

HiDCon : High Deformable Concrete

The elastic-plastic behavior of Highly Deformable Concrete Elements (HiDCon) can be
modeled by a plane Mohr-Coulomb criterion with hardening. With 0,, supposed to be the
intermediate principal stress and with negative compression sign convention the Mohr-
Coulomb criterion reads:

F(0,8)=(0,-0,)+(0,+0,)sin@-2C(&)cos@ < 0

Where ¢ is the hardening parameter and (0;, 0;) the major and minor in-plane principal
stresses. The compressive strength R. (the UCS ) is related to the cohesion by:

2C(&)cos
R ()= M
1-sin@
And it varies with the plastic strain according to the hardening rule. This rule is chosen in a
way to have the typical behavior of HiDCon elements illustrated in the following figure.

O A

Opl-- , 7

o

»
»

€ 3

Under a uniaxial stress, the deformation is elastic and linear up to the stress Oy for the axial
strain €= Op/E and then a perfect plastic strain takes place up to a total axial strain &. After
this stage, the stress increases with a paste which is a quadratic function of the plastic strain.

Constitutive model:
g=¢g +¢’
1+v

Elasticity: ge="Yg -%tr((s) 5,
_ 496G if F<O then A=0

Plasticity: g’ _—, . . ..
(olo) if F=0 then A\=0, F<0, AF=0

Plastic potential:

G(o)=(0,-0,)+(0, +0,)siny
Hardening rule:
R(E)=0,+BE(E-¢])  E=aver &’
where the hardening variable § starts from O at the initial state of the material, the symbol < . )

stands for the positive part:
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<x>=0 if x<0
<x>=x if x>0

o . . : :
and ¢/ =¢, -——2 and [3 a material parameter. O is an internal constant parameter ensuring
E

that for a unixial compression test § represents the axial plastic strain.

Nb=7
Paraml = E
Param2 =v

Param3 = g, (initial UCS)
Param4 = @ (°)

Param5 = ) (°)

Param6 = g,

Param7 =3

Internal variable
Vin(n,1) : &
Necessary Condition on parameters: €y > O¢/E
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