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General Notation 
 

For each material type, the code is composed of 5 digits: 

 

The first digit is 1, 2,3, 4 for designating the elements nature: 

1 for bar elements, 

2 for joint elements (interfaces, cracks and fractures),  

3 for surface elements (bulk materials), 

4 for anchor elements. 

5 for beam elements 

6 for bolt elements. 

. 

 

This second digit is 1 or 2 to designate the phenomena which is concerned: 

1 for Mechanics, 

2 for Hydraulics, 

3 for Thermal. 

 

The other 3 digits define the constitutive model. 

 

For each material constitutive model, first the number of parameters, Nb, and then the values 

of the Nb parameters are specified.  
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I) Mechanics 
 

 

I.1) Mechanics -   BARS 
 

 

11100   : Linear elastic bar element 
 

 

Constitutive Relation : F = Es ε 

F : axial force 

ε :  axial deformation  

 

Note: In 2D plane modeling, a unit the thickness of the model is considered in relation with a 

3D modeling. The section S considered for the bar is so related to a unit thickness of the 

model. If, in the direction perpendicular to the plane of modeling, the bars are distant, for 

instance,  of 40 cm and if the adopted unit length is meter, then there are 2.5 bars per unit 

thickness of the model. Then, the physical section of the bars has to be multiplied by this 

factor 2.5 to define S in the above relation, and then multiplied by the Young’s modulus to 

define the above parameter Es. 

Example: The length unity is meter and the stress unity, MPa, and so the force unity, MN 

(Mega Newoton). Bars diameter is 2 cm and bars distance in the direction perpendicular to the 

plane of modeling equal to 40cm, and the steel Young’s modulus 210.10
3
 MPa. Then 

Es = π×(0.01)2 ×2.5 ×210.10
3
 =1650 MN. The axial force calculated by the code is expressed 

in MN unity.  

 

Nb = 1 

Param1 = Es   (The product E×S of the Young modulus and the section of the bar. 

Dimension : force) 

 

 

 
 

 

  

11100  ELinear Elastic bar element 

 

Nb: 1 

Param1 = Es     
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11110   : Linear elastic-plastic bar element 
 

Constitutive Relation : F = Es (ε−εp
) 

dεp
 = 0  if σ< σy or if σ = σy and dσ< 0  

F : axial force 

ε : axial deformation 

εp : axial plastic deformation  

 

Note: The section S for Es and Ys takes into account in the same way the bars distance in the 

direction perpendicular to the plane of the model: see the note for the material 11100. In every 

configuration, we must have Ys/Es=σy/E. 

 

Nb = 2 

Param1 = Es   (Product E×S of the Young modulus and the section of the bar. Dimension : 

force) 

Param2 = Ys   (Product σyS,  limit elastic force) 

 

 
 

  

11110  Elastoplastic bar element 

 

Nb: 2 

Param1 = Es     

Param2 = Y2    
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I.2) Mechanics - ROCKJOINTS & FRACTURES 

 

 

 

21100   : Linear elastic joint 
 

Constitutive Relation:   σ = K u ,  
t tn t

n nt n n

K K u

K K u

τ     
=    σ     

 

Nb = 3 

Param1 = Kt   (tangent stiffness) 

Param2 = Kn  (normal stiffness) 

Param3 = Knt = Ktn   (non diagonal stiffness term, defining dilatancy) 

 

Note: The stiffness parameters Kt, Kn, Ktn have the dimension of stress/length. Their values 

are highly depending on the physical properties of the fractures walls (roughness..) and/or of 

filling materials (for rockjoints). If a rockjoint is assimilated to a thin layer of thickness e of 

an elastic material with Young’s modulus E and shear modulus µ, then Kt = µ/e, Kn = E/e and 

Ktn=0. 

 

 
 

 

  

21100  Linear Elastic joint 

 

Nb: 3 

Param1 = Kt   (tangent stiffness) 

Param2 = Kn  (normal stiffness) 

Param3 = Knt = Ktn  (non diagonal stiffness → dilatancy) 
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21120   : Linear elastic with Mohr-Coulomb plasticity 
 

σ = K (u - u
p
) 

Elasticity: The model 21100 

Plasticity : Mohr-Coulomb criterion: 

( ) tan 0nf cσ = τ + σ φ − ≤  

Nb = 5 

Param1 = Kt 

Param2 = Kn 

Param3 = Knt = Ktn 

Param4 = c  (cohesion) 

Param5 = φ  (in degrees, the friction angle) 

 

 
 

  

21120  Linear Elastic joint with Mohr-Coulomb 

  Plasticity 

Nb: 5 

Param1 = Kt 

Param2 = Kn 

Param3 = Knt = Ktn 

Param4 = c  (cohesion) 

Param5 = φ  (in degrees, the friction angle)  
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21200   : Non-linear hyperbolic elasticity 
 

The closure displacement is limited by the initial thickness e of the interface. The stress tends 

to infinity when closure displacement un tends to -e and to k0e for great positive openings: 

 

-e
 

un
 

k0
 

k0 e
 

σn
 

 

   0

1 /

n
n

n

k u

u e
σ =

+
 

 
The tangent behavior is linear: 

0

1 /

t t t nt n

n
n nt t

n

k u k u

k u
k u

u e

σ = +

σ = + +

 

The normal stiffness kn is un-dependant and given by:  

     0

1 /
n

n

k
k

u e
=

+
 

Nb = 4 

Param1 = Kt   (tangent stiffness) 

Param2 = k0  (normal stiffness) 

Param3 = Knt = Ktn   (non diagonal stiffness term causing dilatancy) 

Param4 = e   (maximum closure or physical thickness of the interface) 

 

 
 

  

21200  Non-linear hyperbolic elastic joint 

 

Nb: 4 

Param1 = Kt   (tangent stiffness) 

Param2 = k0  (normal stiffness) 

Param3 = Knt = Ktn  (non diagonal stiffness → dilatancy) 

Param4 = e    (maximum closure or physical thickness 
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21220   : Non-linear elasticity with Mohr-Coulomb 

plasticity 
 

σ = K (u - u
p
) 

Elasticity: The model 21200 

Plasticity : Mohr-Coulomb criterion: 

 

Nb = 6 

Param1 = Kt 

Param2 = k0 

Param3 = Knt = Ktn 

Param4 = e 

Param5 = c 

Param6 = φ  (degrees) 

 

* 

 

  

21220  Non-Linear Elastic joint with  

Mohr-Coulomb Plasticity 

Nb: 6 

Param1 = Kt 

Param2 = k0 

Param3 = Knt = Ktn 

Param4 = e 

Param5 = c 

Param6 = φ  (degrees) 
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21230   : Non-linear elasticity with Lemaitre creep law 
e v

u u u= +ɺ ɺ ɺ  

σ = K (u – u
v
),  

v
t tn t t

v
n nt n n n

K K u u

K K u u

 τ −   
=       σ −     

 

0

1 /
n

n

k
K

u e
=

+
 

Elasticity: the same that 21200 

Viscous strain: Lemaitre creep law for uniaxial creep under constant stress σ with a stress 

threshold σc
 
:  

εv
(t) = a <σ−σc>

 q 
t
α
  

where: 

< x > = 0     if     x < 0 

< x > = x     if     x ≥ 0 

 

The incremental creep law uses the internal variable 
1/αξ = ε and reads:    

1/αξ = ε  ,  ( )1/
1

,
q

ca
α α−ξ = < σ − σ > ε = α ξ ξɺ ɺɺ  

To avoid numerical problems near ξ=0, the law is completed by:  1

0

α−ε = α ξ ξɺɺ   if  ε ≤ ε0. 

This law is adapted to the joint shear and normal creeps. 

 

For the normal creep: 

( )1/
1

;
q v

n n n n c n n ns b h u
α α−ξ = < σ − σ > = α ξ ξɺ ɺɺ  

where sn = ±1 is the sign of σn and bn  a constant parameter. The normal creep must be limited 

in order to avoid the closure exceeding e, or un falling below –e. The elastic law takes already 

into account this constraint. The parameter h ,   0 ≤ h ≤ 1, is introduced in order to satisfy this 

condition. 

 

For shear creep, it is supposed that, the normal compressive stress decreases the slip rate, 

similar to frictional effects, and so the criterions depends on the normal stress also with a 

‘friction angle’ parameter φ. It is also supposed that a traction normal stress has no effect on 

the viscous slip. This leads to the following expressions: 

( )1/
1

tan ;
q v

t t t n c t t ts b u
α

α−ξ = τ − −σ φ − τ = α ξ ξɺ ɺɺ  

where st = ±1 is the sign of τ and bt  a constant parameter 

 

Nb = 12 

Param1 = Kt   (tangent stiffness) 

Param2 = k0  (normal stiffness) 

Param3 = Knt = Ktn   (non diagonal stiffness term causing dilatancy) 

Param4 = e   (maximum closure or physical thickness of the interface) 

Param5 = q 

Param6 = α 

Param7 = bt 

Param8 = bn 
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Param9 = τc 

Param10 = σc 

Param11 = φ  (°) 

Param12 = ε0 

 

Internal Variables: 

Vin(n,1): internal for non linear elasticity 

Vin(n,2) : not existing for this material 

Vin(n,3) =ξt , Vin(n,4) =ξn  

 

 

 
  

21230  Non-Linear Elastic joint with Lemaitre  

creep law 

Nb: 12 

Param1 = Kt       Param11 = φ  (°) 

Param2 = k0      Param12 = ε0 

Param3 = Knt = Ktn    

Param4 = e   (maximum closure) 

Param5 = q 

Param6 = α 

Param7 = bt 

Param8 = bn 

Param9 = τc 

Param10 = σc 
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21240   : Non-linear elastoplastic with Pouya strength 

criterion and with softening 
 

 

                 

C0 

φ0
 

τ 

τc 

σR σn 

F0 

Fr 

 
 

Strength criterion (plasticity): 2 2 2

0
tan

n c
F b g h gσ ξ = τ + + σ φ − τ( , )

 
2 2 2

0 0
0

0

tan
tan

2 tan

R

c c R

R

C
b

+ σ φτ = = τ − σ φ
σ φ

,
 

The initial strength function F0 and the residual Fr  are hyperbolic surfaces represented in the 

figure. The evolution from to the other results from the variation of the g and h which are 

evolution functions for the cohesion and friction angle and vary from 1 (initial state) to 

residual values respectively gr and hr: 

 0

r r
r

R

g
C

τ σ= =
σ

 

0

r
r

h
φ=
φ

 

This evolution is controlled by the ductility parameter β. The evolution of g can include a 

hardening (increasing) stage if β >1.  

 

Non associate Plasticity with dilatancy angle ψ0 : 
p G

u
∂= λ
∂σ
ɺɺ    , 

2 2 2

0
tan

n
G b g hσ ξ = τ + + σ ψ( , )  

 

Hardening law:

                 

p
uξ = αɺ ɺ

 

Strain :  
e p

u u u= +ɺ ɺ ɺ  

 

Elasticity: the same that 21200 

 

   σ = K (u – u
p
),  

  

  

p
t tn t t

p
n nt n n n

K K u u

K K u u

 τ −   
=      σ −      

 

Non linear modulus:     

     0

1 /
n

n

k
K

u e
=

+
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Nb = 12 

Param1 = Kt   (tangent stiffness) 

Param2 = k0  (normal stiffness) 

Param3 = Knt = Ktn  (non diagonal stiffness term causing dilatancy)

Param4 = e   (maximum closure or physical thickness of the interface)

Param5 = C0 

Param6 = φ0  (°) 

Param7 = ψ0  (°) 

Param8 = σR 

Param9 = gr 

Param10 = hr 

Param11 = α 

Param12 = β 

 

Condition:      σR tanφ0 ≤ C0 

Internal Variables: 

Vin(n,1): reserved for damage (not existing for this material)

Vin(n,2) : internal for non linear elasticity

Vin(n,3) =ξ 
 

 

21240  No

plasticity

Nb: 12 

Param1 = Kt   

Param2 = k0   

Param3 = Knt = 

Param4 = e   (maximum closure

Param5 = C0 

Param6 = φ0  (°)

Param7 = ψ0  (°)

Param8 = σR 

Param9 = gr 

Param10 = hr 

                                                           www.fracsima

 

non diagonal stiffness term causing dilatancy) 

(maximum closure or physical thickness of the interface) 

Vin(n,1): reserved for damage (not existing for this material) 

: internal for non linear elasticity 

 
 

Non-linear elastoplastic joint with softening 

plasticity 

   Param11 = α 

   Param12 = β 

= Ktn 

(maximum closure) 

(°) 

(°) 

fracsima.com 
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21510   : CZFrac: Cohesive Zone Fracture with 

Damage-Plasticity and Unilateral Contact 
 
The Cohesive Zone Fracture (CZFrac) model describes the evolution of an interface from a 

cohesive interface like a rockjoint or thin layer of cohesive material (left), to a fracture with 

unilateral fictional contact (right).  

The normal and tangent stiffnesses depend on a damage variable 0 ≤ D ≤  1 with residual 

values for D=1. The tangent relative displacement is divided into an elastic and a plastic part. 

The plastic part represents the irreversible slip on the frictional contact surface after the 

interface in totally damaged. 
   

 

ut 

un 

σn τ 

                

     

 

ut 

un 

σn τ 

 
   D = 0 : cohesive joint    D = 1 : frictional contact 

 

               

φ0
 

σR 

σn 

C 

τ 

τc 

φr
 

Fr

F0 

 
 

s : contact parameter depending on -un ;         s =1   if   un  < 0,    s =0  if un  ≥ 0 

 

 

Damage criterion:   ( )22 2 2tan 2 tan
n c n

F D h hg g Cσ = τ − σ φ + τ σ φ −( , )  

with:     

2 2 2tan

2 tan

R

c

R

C + σ φτ =
σ φ

  ,    
tan

tan

r
r

h
φ=
φ  

( )1 1 1g D D ln D= − − β −( ) ( ) ( )       ( )1 1
r r

h D h D h
β= + − −'

( ) ( )  

[ ]( )0(1 )
p

D s u uσ = − + −K k

 

 

0

0

t

n

K

K

 
=  
 

K   

 

0

0 0

0

0
1 /

t

n

n

k

k

u e

 
 =
 

+  

k
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Plasticity: There is no plastic deformation as long as D is smaller than 1:   0 1
p

u if D= <ɺ

Then the plastic deformation occurs only in the shear direction: 
0

p
p t

u
u

 
=  
 

  

The plastic F
p
 criterion is the residual damage criterion, i.e., the damage criterion for D=0. It 

is written as: 

   tanp

r n
F hσ = τ + σ φ( )     with:

  

 

0

0

0

0
1 /

t p
t t

n
n n

n

k
u u

s k
u

u e

 
 τ  − =     σ   +  

  

The parameter β > 0 controls the brittle (small β) to ductile (increasing β) damage behavior. 

For a pure normal stress, the normalized traction-separation curve has the following shape 

depending on β value:  

 

 

Traction-Separation curves for different β values 

 

Option Toughness 

If the Toughness Option is chosen (Param13=1) then the parameters σR and C are determined 

from the toughness K
I
c  (Param14) by the following relations depending on the size L of the 

joint element: 

2
( ) , ( ) ( )I

R c R

R

C
L K C L L

L
σ = = σ

π σ
 

Where σR and C are the parameters 4 and 5 defined for the material (see the list below). This 

allows modeling well the propagation for large values of L without mesh size dependency.  

  

Option Plasticity 
For a shear loading, the shear stress versus slip displacement has de same type of dependency 

on β value in damage phase. It depends also on the value of the normal stress and if plasticity 

is taken into account or not. If the plasticity is not modeled (Option 0 for the parameter 12 of 

the model), then the curve follows the line with the slope k0t  (residual tangent stiffness) for 

great values of ut (following figure): 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2
u

σ
/σ

0

β = 2

β=0.2

1.5

1
0.75

0.5
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ut 

k0t 

σn
1
 

σn
2
 

σn
3
 

τ 

 
Shear stress versus slip under different compressive normal stresses for the option without 

plasticity: the curves join and follow the elastic line with residual stiffness k0t 

 

If plasticity is taken into account (Option 1 for the parameter 12 of the model), then the curve 

ends on a plastic plateau with the residual shear stress τr
. This shear stress is related to the 

normal stress σn with the residual friction angle hr tanφ0  (following figure). 

Note that this relation holds only of the contact is maintained: because of the unilateral 

contact condition, if un>0 then s = 0 and then σn = 0 and so τr  = 0. 

 

 

   
ut 

k0t 

σn
1
 

σn
2
 

σn
3
 

 τr = hr σn tanφ0 

τ 

 
Shear stress versus slip under different compressive normal stresses for the option with 

plasticity 

 

For brittle damage (small values of β) and plasticity, it is possible to obtain a sharp decrease 

of the shear stress after the peak value and then an increase to reach the plastic residual stress 

(following figure). 
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   ut 

k0t 

 τr = hr σn tanφ0 

τ 
 τp = σn tanφ0 

 
Shear stress versus slip for the option with plasticity and brittle damage (β < 1)  

 

 

Nb = 12 

Param1 = Kt 

Param2 = Kn 

Param3 = e 

Param4 = σR 

Param5 = C 

Param6 = φ  (°) 

Param7 = hr 

Param8 = β 

Param9 = β' 
Param10 = k0t 

Param11 = k0n 

Param12 = Option (1 if plasticity taken into account) 

Internal variable   

Vin(n,1) : D 

Necessary Condition on parameters: R
C tan> σ φ

 
 

 

 
 

21510  Cohesive Fracture with Damage-Plasticity 

and Unilateral Contact 

Nb: 14 

Param1 = Kt   Param11 = k0n 
Param2 = Kn   Param12 = Option Plasticity 

Param3 = e   Param13 = Option Toughness 

Param4 = σR   Param14 = K
I
c 

Param5 = C 

Param6 = φ  (°) 

Param7 = hr 

Param8 = β 

Param9 = β' 
Param10 = k0t 
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I.3) Mechanics -  BULK MATERIALS 
 

 

31100   : Linear elastic and isotropic material 
 

Nb = 2 

Param1 = E   (Young’s modulus) 

Param2 = ν  (Poissson’s ratio) 

 

 
 

 

31110   : Elastic-plastic isotropy with Drucker-Pragar 

criterion 
e p= +ε ε εɺ ɺ ɺ  

Linear elasticity with parameters E and ν (see the model 31100) 

Plasticity with Drucker-Prager criterion : 2 1( ) 3 s inF J I K= + α −σ  

1 2

1 1
, ,

3 2
ii ij ij kk ij ij ij

I S J S S= σ = σ − σ δ =  

K and sinα are material constants.   
 

 

σ1 

σ2 

σ3 

S 

 
Note that the Drucker-Prager criterion is basically written as: 

2 1( ) 'F J I K= + γ −σ  

The equivalence between the two expressions is ensured by taking: 

     s in 3 , 3 'K Kα = γ =  

31100  Linear Elastic and Isotropic Material 

 

Nb : 2 

Param1 = E   (Young’s modulus) 

Param2 = ν  (Poisson’s ratio) 
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Nb = 4 

Param1 = E 

Param2 = ν 

Param3 = K 

Param4 = sinα 

 

 

  

31110  Linear Isotropic Elasticity with 

  Drucker-Prager Plastic Criterion  

 

Nb : 4 

Param1 = E 

Param2 = ν 

Param3 = K 

Param4 = sinα 
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31120   : Elastic-plastic isotropic material with Mohr-

Coulomb criterion, Non-Associate and Traction 

Truncated  
 

e p= +ε ε εɺ ɺ ɺ  

Linear elasticity with parameters E and ν (see the model 31100) 

Plasticity with Mohr-Coulomb criterion: 

1 3 1 3( ) sin cos 0
2 2

F C
σ − σ σ + σ= + φ − φ ≤σ ,  where    σ1 ≥ σ2 ≥ σ3  principal stresses. 

(In Disroc, compressions are negative, and the above model is equivalent to Soil Mechanics 

convention, where compressions are positive, and then the Mohr-Coulomb criterion reads     

1 3 1 3( ) sin cos 0
2 2

F C
σ − σ σ + σ= − φ − φ ≤σ ,  where  σ1 ≥  σ2 ≥  σ3  principal stresses, as in 

the following figure). 

 

 τ 

σn 

H 

C 

φ 

σ3 σ1 σM 

M A O 
σT 

 
 

Flow rule: p G∂= λ
∂

ε
σ

ɺɺ  or more precisely p G∂∈
∂

ε
σ

ɺ  (external normals cone for singular points, 

with: 

Plastic Potential : 1 3 1 3( ) sin
2 2

G
σ − σ σ + σ= + ψσ  



DISROC Materials’ Catalogue 

 

Fracsima - 2016                                                                     www.fracsima.com 

 

22

 

σ1 

σ2 

σ3 

S 

 

σ1 
σ2 

σ3 

B1 

A1 A2 

A3 

B2 

B3 

O 

(
11 22 33

σ ≥ σ ≥ σ ) 
(

22 11 33
σ ≥ σ ≥ σ ) 

(
11 33 22

σ ≥ σ ≥ σ ) 

 
Mohr-Coulomb Criterion in principal stresses space 

 

 

 

Tensile strength truncation:    σ1 ≤ σT  where σT designates the tensile strength 

 

 

 

σ1 σ3 

σ2 

       
 

Traction Truncated Mohr-Coulomb Criterion 

 

 

 

Note 210514: 

 if  
cos

sin
T

C
φσ ≥
φ

 then it has no effect. If  
2 cos cos

1 sin sin
T

C
C

φ φ≤ σ ≤
+ φ φ

 then it has no effect for 

uniaxial tractions:  the tensile unixial strength remains equal to 
2 cos

1 sin

C φ
+ φ

. If   
2 cos

1 sin
T

C φσ ≤
+ φ

 

then it will represent the limit aof uniaxial traction allowed by the criterion, or the tensile 

(uniaxial) strength. 
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Nb = 6 

Param1 = E 

Param2 = ν 

Param3 = C 

Param4 = φ (°) 
Param5 = ψ (°) 
Param6 = σT 
 
 
 

 
  

31120  Linear Isotropic Elasticity with 

  Mohr-Coulomb Plastic Criterion 

  Non-Associate and Traction Truncated 

 

Nb : 6 

Param1 = E 

Param2 = ν 

Param3 = C 

Param4 = φ (°) 
Param5 = ψ (°) 
Param6 = σT 
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31121   : Elastic-plastic Mohr-Coulomb with evolving 

properties (Gelisol) 
 

This model is exactly the same that the Elastic-plastic Mohr-Coulomb model (31120) but with 

two set of parameters. The model 31120 includes 6 parameters (E,ν,C, φ, ψ, σT). The model  

31120 includes 6 parameters (Ei,ν i, Ci, φi, ψi, σi
T
) for the initial values of the Young modulus, 

Poisson ratio, cohesion, friction angle, dilation angle and tensile strength, and  6 parameters 

(Ef,ν f, Cf, φf, ψf, σf
T
) for the initial values of these quantities. The evolution of the parameters 

between the initial and final values is given by internal variables v
i
 (i=1,6) in the following 

form : 

E = (1-v1) Ei+ v1 Ef 

ν = (1-v2) νi+ v2 νf 

C = (1-v3) Ci+ v3 Cf 

φ = (1-v4) φ i + v4 φ f 

ψ = (1-v5) ψ i+ v5 ψ f 

σT = (1-v6) σT
 i+ v6 σT

 f 

 

The evolution of the internal variable can be handled by the user in the User module. The 

default value of the internal variables is zero.  

For Gelisol model conceived to model soil and rock freezing phenomenon and its effect on 

the mechanical properties, the evolution of internal variables is handled automatically in 

Disroc modules according to the constitutive equations of the coupled THM phenomena (See 

documentation on the Gelisol model). 

 

 
Note 210515: 

The Note 210514 for the material 31120 concerning the relation between the tensile strength 

truncation remains valid for the evolving parameters, i.e., it takes into accound the evolving 

quantities and not the initial or finale values of the parameters. According to the evolution of 

the internal variables, the tensile strength σT can become greater or smaller than the limit 

given by the Mohr-Coulomb criterion and make that the truncation become active or not. 

 

Note 210516: 

The variation of the elastic parameters E and ν makes necessary the computation of the whole 

rigidity matrix at each time increment and this is a very time consuming action. If the 

difference between the initial and final values of these parameters is small, it is better to take 

the same values for them in order to reduce computation time. Disroc does not take into 

account the variation of the material’s stiffness if it is less than 0.1 %, or more precisely if: 

 

( ) 0.001
/ 2

f i

f i

f i

E E

E E

−
+ ν − ν <

+
 

In this case Disroc considers E and ν constants and equal to Ei and νi, and the compotation 

becomes faster. 

  

Internal Variables: 

Vin(n,1):  v1 (can represent also scalar damage) 

Vin(n,2) : v2 
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Vin(n,3):  v3 

Vin(n,4) : v4 

Vin(n,5) : v5 

Vin(n,6) : v6 

 

Nb = 12 

Param1 = Ei     Initial Young modulus 

Param2 = νI  Initial Poisson ration 

Param3 = Ci  Initial Cohesion 

Param4 = φi (°) Initial Friction Angle 

Param5 = ψi (°) Initial Dilation Angle 
Param6 = σT

i  Initial Tensile Strength 
Param7 = Ef  Final Young modulus 

Param8 = νf  Final Poisson ration 

Param9 = Cf  Final Cohesion 

Param10 = φf (°) Final Friction angle 
Param11= ψf (°) Final Dilation angle 
Param12 = σT

f  Initial Tensile Strength 

 
 
 

 
 

 

  

31121  Evolving Elastoplastic Mohr-Coulomb  

  Gelisol 

 

Nb : 12 

Param1 = Ei    

Param2 = νi 

Param3 = Ci 

Param4 = φi (°) 
Param5 = ψi (°) 
Param6 = σT

i 
Param7 = Ef 

Param8 = νf 

Param9 = Cf 

Param10 = φf (°) 
Param11= ψf (°) 
Param12 = σT

f 
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31125   : Elastic-plastic Mohr-Coulomb with 

Compressibility Cap (MC-CAP) 
 

The objective of this model is to produce a compressible material with the following shape of 

the stress-strain curve for uniaxial compression as well as oedometric compression: 

 

 

E 

εM
 ε 

σ 

σ0
 k1 

  
The curve presents, after the elastic limit, a long plastic stage with zero to small slope 

followed by a quickly increasing slope. 

 

The Mohr-Coulomb criterion with traction cutoff is used as well as a compressible material 

criterion, both with hardening (following figure). 

 σe
 σe 

σm
 

FT
 

Fs
 

Fc
 

ξ 

η 

    

 q 

FT
 

Fs
 

Fc
 

ξ 

η 

p 
 

Figure: Fs : Shear criterion (Mohr-Coulomb), FT : Traction cutoff, Fc : Compressibility 

   (q = σe,    p = -σm)     

 

 

Constitutive model: 

e p= +ε ε εɺ ɺ ɺ  

Elasticity:   
1

( )e t r
E E

+ ν ν=ε σ - σ δɺ ɺ ɺ ,      

Plasticity:               p s cT
s T c

G GG∂ ∂∂= λ + λ + λ
∂ ∂ ∂

ε
σ σ σ

ɺ ɺ ɺɺ  

Flow rule:     
0 0

0 0 , 0 , 0

i i

i i i i i

if F then

if F then F F

< λ =

= λ ≥ ≤ λ =

ɺ

ɺ ɺɺ ɺ
      for i=s, c or T 

 

I) Mohr-Coulomb + Traction Cutoff 
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This part of the model corresponds to the model 31120 with hardening for the parameter 

cohesion. The traction cutoff value remains constant (no hardening). 

With negative compression sign convention, the Mohr-Coulomb criterion reads: 

 

( ) ( )1 2 1 2( , ) sin 2 ( ) cos 0
s

F Cξ = σ − σ + σ + σ φ − ξ φ ≤σ  

Or: 

( ) ( )1 2 1 2( , ) sin ( ) (1 sin ) 0
s c

F Rξ = σ − σ + σ + σ φ − ξ − φ ≤σ  

2 cos

1 sin
c

C
R

φ=
− φ

 

Where C is the cohesion, Rc the uniaxial compression strength (UCS) and ξ a hardening 

parameter.  

  

2
0

1 2 0
( ) p

c c
R R k kξ = + ξ + ξ − ε

 
 

where the symbol .  stands for the positive part: 

< x > = 0     if     x < 0 

< x > = x     if     x ≥ 0 

Plastic potential:   ( ) ( )1 2 1 2( , ) sin
s

G ξ = σ − σ + σ + σ ψσ  

The hardening rule is: 

  :p pξ = α ε εɺ ɺ ɺ

 
,    

( )2

1 sin

2 1 sin

− ψα =
+ ψ

 

The value of α assures that for a uniaxial compression we have : p

yyδξ = δε . 

 

 

II) Compressible material 

  

This mechanism of plastic deformation is defined by the following equations: 

 

 Plastic criterion ( )2 2

2 1( , ) 1 ( )c e m MF a aη = σ + ϕσ − − ϕ σ ησ  

 Plastic potential 2 2

3( , )
c e m

G aη = σ + ϕσσ ,       p c
c c

G∂= λ
∂

ε
σ

ɺɺ  

       Hardening  
2

0

3 4
( ) p

M M v
k kσ η = σ + η + η − ε  

       Hardening law  :pη = −ε δɺ ɺ  

 

Where σe is the Mises Equivalent Stress and σm the mean stress: 

 
3 1

, :
2 3

e

ij ij mS Sσ = σ = σ δ  

ϕ  is the porosity and a1, a2, 
0

M
σ , k3, k4 and 

0

vε  are constant parameters. The evolution of the 

porosity versus des total volumetric strain is given by: 

 

   (1 ) vol

p
ϕ = − ϕ εɺ ɺ       

Which supposes that the solid grains incompressible and that the elastic volumetric strain is 

negligible. This equation can be integrated in: 

   
01 (1 )

vol
pe

−εϕ = − − ϕ      
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With ϕ0 the initial value of the porosity for ε=0. Of course, the condition ϕ ≥ 0 should be 

verified. To avoid numerical problems with ϕ=0¸the condition of ϕ≥0.0001 will be imposed 

when using this equation. 

Note : When a uniaxial compression σ is considered, the condition that MC criterion be 

reached is that  σ = Rc  and the condition that the elliptic cap criterion be reached is that: 

   1

2

1

/ 9
M

a

a

− ϕσ = σ
+ ϕ

 

So the condition that for a uniaxial compression the MC criterion be reached before the 

elliptical cap is: 

  
01 0

2 0

1 2 cos

1 sin/ 9
M

a C

a

− ϕ φσ >
− φ+ ϕ

 

   

 

Parameters 
Nb = 17 

Param1 = E     Young modulus 

Param2 = ν  Poisson ration 

Param3 = C  Initial Cohesion 

Param4 = φ  (°) Friction Angle 

Param5 = ψ  (°) Dilation Angle 
Param6 = σT

  Tensile Strength 

Param7 =σ0
M  Limit compression stress (positive for compression) 

Param8 = ϕ0  Initial porosity (0.0001 < ϕ0 < 1) 

Param9 = a1  positive number 

Param10 = a2    positive number 

Param11 = a3    positive number 

Param12 = k1 

Param13 = k2 

Param14 = εp
a : Limit axial plastic strain for linear hardening (positive for compression)   

Param15 = k3 

Param16 = k4 

Param17 = εp
v : Limit plastic strain for linear hardening (positive for compression) 

 

Internal variable   

Vin,m(n,1) : ϕ  (porosity) 

Vin,m(n,2) : ξ 

Vin,m(n,3) : η 
Conditions to be satisfied:  0 < 1-a1ϕ0 
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31125  Elastoplastic Mohr-Coulomb with  

compressibility cap  (MC-CAP) 

   

Nb : 17 

Param1 = E   Param13 = k2 

Param2 = ν   Param14 = εp
a 

Param3 = C   Param15 = k3 

Param4 = φ  (°)  Param16 = k4 

Param5 = ψ  (°)  Param17 = εp
v 

Param6 = σT
 

Param7 =σ0
M 

Param8 = ϕ0 

Param9 = a1 

Param10 = a2 

Param11 = a3 

Param12 = k1 
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31130   : Viscoelastic isotropic material : Linear 

elasticity and Norton-Hoff creep law 
 

e v= +ε ε εɺ ɺ ɺ  
1

( )e
t r

E E

+ ν ν=ε σ - σ δɺ ɺ ɺ ,                   13

2

v

e

α−= α ξ ξ
σ
ɺɺε S

 

with: 

S  stress deviator, 
1

3
ij ij kk ijS = σ − σ δ ,  Mises equivalent stress  

23e Jσ = ,    
2

1

2
ij ij

J S S=  

( )1/
n

e ca
α

ξ = < σ − σ >ɺ

 
where, the positive part  function <

.
> is defined as: 

< x > = 0     if     x < 0 

< x > = x     if     x ≥ 0 

To avoid numerical problems near ξ = 0, the law is completed by: 

  1

0

3

2

v

e

α−= α ε ξ
σ
Sε ɺɺ   if  ξα

 ≤  ε0 

If α =1, the Norton-Hoff creep model is recovered. For a uniaxial stress the Lemaitre creep 

law is found:     ( )
n

c
t a t

αε = σ − σ  

The four parameters a, n, α, σc can thus be identified from uniaxial creep results. 

 

Nb = 7 

Param1 = E  

Param2 = ν 

Param3 = a     (attention to the stress and time unities) 

Param4 = n 

Param5 = α 

Param6 = σc 

Param7 = ε0 

 

Internal Variables: 

Vin(n,1): reserved for damage (not existing for this material) 

Vin(n,2) : ξ, internal 

 

 
 

31130  Linear Isotropic Elasticity with Lemaitre- 

Norton-Hoff Creep law  

Nb : 7 

Param1 = E  

Param2 = ν 

Param3 = a     (attention to the stress and time unities) 

Param4 = n 

Param5 = α 

Param6 = σc 

Param7 = ε0 
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31140   : Viscoplastic isotropic material : Linear 

Elasticity & Associate Plasticity with Mises 

criterion and Kinematic + isotropic hardening & 

Lemaitre viscoelasticity  
 

 

Total strain:   
e p v= + +ε ε ε εɺ ɺ ɺ ɺ  

Elasticity:   
1

( )e
t r

E E

+ ν ν=ε σ - σ δɺ ɺ ɺ ,      

Plasticity:               p F∂= λ
∂

ε
σ

ɺɺ   ,    
0 0

0 0 , 0 , 0

if F then

if F then F F

< λ =

= λ ≥ ≤ λ =

ɺ

ɺ ɺɺ ɺ
 

with:      
2( , , ) ( )F R J K= − −X Xσ σ  

' '

2

1
( )

2
ij ij

J S S− =Xσ ,    ( )' 1

3
ij ij ij kk kk ijS X X= σ − − σ − δ   (Xkk = 0) 

( )0 1 1 bp
K K K e

−= + −
 

2
:

3

p p
p = ε εɺ ɺɺ

  
 

X =
 
X1 + X2 ,       1 1 1 1

p
c d p= −X Xεɺ ɺ ɺ ,        

2 2 2 2

p
c d p= −X Xεɺ ɺ ɺ

, 
 

 

For the initial state of the material, p=0 and X1 = X2 = 0. 

 

Viscous deformation:  13

2

v

e

α−= α ξ ξ
σ
ɺɺε S

 

with:  Mises equivalent stress  
3

2
e ij ijS Sσ = ,    

1

3
ij ij kk ijS = σ − σ δ  

( )1/
n

e c
a

α
ξ = < σ − σ >ɺ

 
Where σc is a stress threshold and <

.
> represents the positive part function: 

 

< x > = 0     if     x < 0 

< x > = x     if     x ≥ 0 

To avoid numerical problems near ξ = 0, the law is completed by:  1

0

3

2

v

e

α−= α ε ξ
σ
Sε ɺɺ   if 

 ξα
 ≤  ε0.  

 

For a uniaxial stress the creep law becomes (Lemaitre creep law with stress threshold): 

( )
n

c
t a t

αε = σ − σ  

The four parameters a, n, α, σc can thus be identified from uniaxial creep results. 

 

If α =1, the Norton-Hoff creep model is recovered:   
3

2

nv

e c

e

a= σ − σ
σ
Sεɺ  

Number of parameters 14: 
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Nb = 14 

Param1 = E  

Param2 = ν 

Param3 = K0 

Param4 = K1 

Param5 = b 

Param6 = c1 

Param7 = d1 

Param8 = c2 

Param9 = d2 

Param10 = a     (attention to the stress and time unities) 

Param11 = n 

Param12 = α 

Param13 = σc 

Param14 = ε0 

 

Internal Variables: 9 

Vin(n,1): reserved for damage (not existing for this material) 

Vin(n,2) : Vin(n,3), Vin(n,4): X
1
xx,  X

1
yy,  X

1
xy      (X

1
zz= -X

1
xx- X

1
yy) 

Vin(n,5) : Vin(n,6), Vin(n,7): X
2
xx,  X

2
yy,  X

2
xy      (X

2
zz= -X

2
xx- X

2
yy) 

Vin(n,8) : p 

Vin(n,9) : ξ, internal 

 

 

 

 

  

31140  Lemaitre-Chaboche Elastic-Plastic with  

  Lemaitre-Norton-Hoff Creep 

Nb : 14 

Param1 = E     Param11 = n 

Param2 = ν    Param12 = α  

Param3 = K0    Param13 = σc 

Param4 = K1    Param14 = ε0 

Param5 = b 

Param6 = c1 

Param7 = d1 

Param8 = c2 

Param9 = d2 

Param10 = a  
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31200   : Linear Elasticity with General Anisotropy 

 
 

In 2D plane problems, ε13= ε23= σ13= σ23=0, and the Hook law reduces to : 

 

11 12 13 1611 11

22 23 2622 22

33 3633 33

6612 122

c c c c

c c c

c c

c

σ ε    
    σ ε    =
    σ ε
    σ ε    

 

 

The elastic parameters, in the more general case of anisotropy are the 10 followings:  

 

Nb = 10 

Param1 = c11,  Param2 = c12,  Param3 = c13,  Param4 = c16, 

Param5 = c22,  Param6 = c23,  Param7 = c26, 

Param8 = c33,  Param9 = c36, 

Param10= c66 

 

 

 
 

 
  

31200  Linear Elasticity with 

General Anisotropy 

Nb : 10 

Param1 = c11 

Param2 = c12 

Param3 = c13 

Param4 = c16 

Param5 = c22 

Param6 = c23 

Param7 = c26 

Param8 = c33 

Param9 = c36 

Param10= c66 
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31300   : Linear elasticity with Saint Venant anisotropy  
 

The Saint Venant ellipsoïdal material (Pouya 2007) is a 3D anisotropic material depends on 

four parameters, three Young’s modulus (E1, E2, E3) and Poisson ration ν. 

The basic assumption is that the Young’s modulus in different directions varies in special way 

making that indicator surface of its fourth root is a spheroid.  The tensor s and c defined by: 

              

 

ω 

X1 

X2 

x1 

x2 

E1 

E2 

 
 

 

11 12 13 1611 11

12 22 23 2622 22

13 23 33 3633 33

16 26 36 6612 122

c c c c

c c c c

c c c c

c c c c

σ ε    
    σ ε    =
    σ ε
    σ ε    

  ,     

11 12 13 1611 11

12 22 23 2622 22

13 23 33 3633 33

16 26 36 6612 122

s s s s

s s s s

s s s s

s s s s

ε σ    
    ε σ    =
    ε σ
    ε σ    

 

have the following expressions: 

 

s = 

1 1 2 1 3

21 2 2 3

31 3 2 3

2 3

3 1

1 2

1

1

1

2(1 )

2(1 )

2(1 )

E E E E E

EE E E E

EE E E E

E E

E E

E E

ν ν

ν ν

ν ν

ν

ν

ν

− − 
 
 
 − −
 
 
 − −
 
 
 + 
 
 

+ 
 
 
 +
 
  
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1 1 2 1 3

1 2 2 2 3

1 3 2 3 3

2 3

1 3

1 2

(1 )

(1 )

(1 )

1 21

2(1 )(1 2 )

1 2

2

1 2

2

E E E E E

E E E E E

E E E E E

E E

E E

E E

 − ν ν ν
 
ν − ν ν 
 

ν ν − ν 
 − ν

=  
+ ν − ν  

 − ν
 
 

− ν 
  

c

 

If two elastic modulus are equal, for instance E1=E3,  then a special case of transverse isotropy 

around the x2–axis is found (Figure) depending on only three parameters (E1, E2, ν). 

 

The model can include a rotation ω of X2-axis, representing the direction with the Young’s 

modulus E2, with respect to the x2-axis in the plane of calculation (x1,x2).  Note that the out-of-

plane modulus E3 will be equal to E1. 

 

  

Nb = 5 

Param1 = E1 

Param2 = E2 

Param3 =  E3 

Param4 =  ν 

Param5 =  ω (in degrees) 

 

 
 

  

31300  Linear Elasticity with Saint Venant 

Ellipsoidal Anisotropy 

Nb : 5 

 

Param1 = E1 

Param2 = E2 

Param3 =  E3 

Param4 =  ν 

Param5 =  ω (in degrees) 
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31400   : Linear elasticity with transverse isotropy  
 

 

The elasticity of the material has axial symmetry around the X2-axis. The axial Young’s 

modulus is E2 and the transverse one is E1. The elastic tensor is defined by five independent 

parameters E1, E2, ν12, ν13, µ12 with the following complementary conditions: 

E3 =E1 , ν32 = ν12 ,  ν31= ν13 ,   

 

The constitutive equation in a coordinate system with x2-axis superposed to the axis of 

symmetry X2 reads : 

 

12 13

1 1 1

11 1112 12

1 2 122 22

33 3313 12

1 1 112 12

12

1
0

1
0

1
0

2

1
0 0 0

E E E

E E E

E E E

−ν −ν 
 
 

ε σ−ν −ν    
    ε σ
    =

ε σ  −ν −ν   
    ε σ    

 
 µ 

 

  

 

 

The model can include a rotation ω of X2 with respect to the x2-axis in the plane of calculation 

(x1,x2).  Note that the out-of-plane modulus E3 will be equal to E1. 

 

Note that the Young’s modulus in a direction in the radial plane (X1, X2) and making an angle 

θ with X1 (see the figure) is given by: 
4 4

2 212

1 12 1 2

1 cos 1 2 sin
( ) cos sin

E E E Eθ

θ ν θ= + − θ θ +
µ

 

 

For identification of the parameters from test data, note that a coefficient ν21 different from 

ν12 could be defined for this material satisfying the symmetry condition:  

21 12

2 1E E

ν ν=  

The coefficient ν21 can be measured in the following way: a uniaxial compression σ22 is 

applied in the direction X2 and the strains ε22 and ε11 are measured respectively in axial and 

radial directions X2 and X1.   Then  ν21= - ε11/ε22  and ν21 is obtained from the above symmetry 

condition.  It would be possible also to apply the uniaxial compression σ11 in direction X1 and 

measure the strains ε11 and ε22 in directions X1 and X2. The problem in this case has not axial 

symmetry. But we get directly ν12 = - ε22/ε11. No difference is to be considered for ν31 and ν13. 

  

Nb = 6 

Param1 = E1 

Param2 = E2 

Param3 =  ν12 

 

ω 

X1 

X2 

x1 

x2 

E1 

E2 

θ 

Eθ
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Param4 =  ν13 

Param5 =  µ12 

Param6 = ω (in degrees) 

 

 
  

31400  Linear Elasticity with Transverse Isotropy 

 

Nb: 6 

Param1 = E1 

Param2 = E2 

Param3 =  ν12 

Param4 =  ν13 

Param5 =  µ12 

Param6 = ω (in degrees) 
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31410   : Linear elasticity with transverse isotropy + 

Drucker-Prager plastic criterion 
e p= +ε ε εɺ ɺ ɺ  

2 1( )F J I K= + γ −σ  

 

Elasticity : the same model than 31400 : transverse isotropy 

Plasticity : the same model than 31110 : Drucker-Prager 

   

Nb = 8 

Param1 = E1 

Param2 = E2 

Param3 =  ν12 

Param4 =  ν13 

Param5 =  µ12 

Param6 = ω (in degrees) 

Param7 = K 

Param8 = sinα 
 

 
 

  

31410  Linear Elasticity with Transverse Isotropy 

  and Drucker-Prager Plastic Criterion 

 

Nb: 8 

Param1 = E1 

Param2 = E2 

Param3 =  ν12 

Param4 =  ν13 

Param5 =  µ12 

Param6 = ω (in degrees) 

Param7 = K 

Param8 = sinα 
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31430   : ANELVIP: Anisotropic elasto-viscoplastic 

material : Transverse Isotropic elasticity, 

anisotropic Mohr-Coulomb or Drucker-Prager 

plasticity and Lemaitre creep law 
 

 

 

ω 

X1 

X2 

x1 

x2 

E1 

E2 

 
 

Constitutive model: 

 

    
e p v= + +ε ε ε εɺ ɺ ɺ ɺ      (1.1) 

Elasticity:  1 :e −ε = σɺ ɺC ��       (1.2) 

Plasticity:  
p G∂= λ

∂
ε

σ

ɶ
ɺɺ  , 0 ( 0if Fλ = <σ)ɺ ɶ   (1.3) 

Creep:    
13

2

v
v

v

e

α−= α ξ ξ
σ
Sε
ɶ

ɺɺ
ɶ

 ,  ( )1/
v p n

e c
a

α
ξ = β < σ − σ >ɺ ɶ  (1.4) 

 

With C the elastic tensor with transverse isotropy, Fɶ  anisotropic Mohr-Coulomb (traction 

truncated) or Drucker-Prager criterion and non-associated potential Gɶ  and anisotropic 

Norton-Lemaitre creep law with stress threshold obtained by transformation of isotropic 

material. The creep part or the plastic part of the model can be excluded to obtain a simple 

elastoplastic or a simple viscoelastic model. 

 

Transformation 

 

The material is supposed to be transverse isotropic with the axis of isotropy lying in the plane 

of modeling (x1, x2). This axis is represented by X2 in the figure. 

 

The direction dependency of the strain rate and of the stress threshold for plastic and viscous 

strain is defined by introducing a transformed σɶ
 
obtained by as a linear function of σ. This 

transformation is defined in the following way in the (X1, X2) coordinates: 

 

This elasto-visco-plastic material has axial 

symmetry around an axis related to the material 

and designated by X2 (Figure). This material 

axis can make an angle ω with the x2-axis of 

coordinate system. The elastic behavior 

corresponds to the general transverse isotropic 

material around the axis X2 of the material with 

five independent parameters. The anisotropic 

plastic and viscous deformations of the material 

are defined by a linear transformation from 

isotropic plastic and viscous deformation 

models. They have also transverse isotropy 

around the axis X2. 
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0 0

0 0

0 0 0 0

XX XY XX T XY

XY YY T XY N YY

zz zz

f

f f

σ σ σ σ   
   σ σ → σ σ
   

σ σ      

σ = σ =ɶ
 

 (1.5) 

- A uniaxial stress in direction X1, or any direction perpendicular to X2 is not changed 

(X2 remains an axis of symmetry) 

- A uniaxial stress σ  in direction X2 is changed in a uniaxial stress f2 σ   

- A pure shear stress τ in direction X1X2 is changed in a pure shear stress  fT τ in the 

same direction. 

We put: 

fN = 1 + aN       ,     
T N Tf f b= +   (1.6)  

The constants aN and bT are considered as two material’s parameters describing its anisotropy. 

We note also: 

     fT = 1 + aT     (1.7)  

with the following relations: 

 

( )21 1 , 2T N T T T N T T Na a b b f f a a a= + + − = − = + −   (1.8) 

 

We note pσɶ  the transformed stress  σɶ  obtained with the parameters ( , )p p

N T
a a   and vσɶ  

obtained with ( , )v v

N Ta a . 

 

We note ɶS  and eσɶ  the deviator stress and Mises equivalent stress associated to σɶ  and define: 

e

e

σβ =
σ
ɶ

 
       (1.9) 

For a uniaxial stress in the direction θ with respect to the x1, the ratio β has the following 

expression:  

 

( )2
2 2 2( ) 1 sin 3 sin cos

N T
a bβ θ = + θ + θ θ   (1.10) 

Where: 

θ = θ − ω     (1.11) 

 

The transformation applied to the viscous strain 
vε = β εɶ allows making the creep law 

anisotropic (Figure). But note that a uniaxial stress σ in a direction θ different of ω is not 

transformed to a uniaxial stress and so different β rations are obtained for UCS or for the 

creep rate as it will be seen below.  

 

 

I) Elasticity 
 

The elastic behavior has axial symmetry or the transverse isotropy around the axis X2 (see the 

figure). The Young’s modulus in direction X2 is E2 and in directions X1 and X3 (out of plane), 

equal to E1. The three other parameters are the Poisson’s ratios ν12 and ν13 and the shear 

modulus µ12. The elastic model here is exactly the same that the model 31400 with the five 

parameters (E1, E2, ν12, ν13, µ12) and the angle ω between the axis of symmetry X2 and the 
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coordinate axis x2. See the material 31400 for the method of identification of parameters and 

the Young’s modulus in different directions of the material. 

 

 

II) Plastic deformation 

 

The plastic deformation is defined by the plastic criterion Fɶ  and the plastic potential Gɶ  with 

the following relations: 

( ) ( ) , ( ) ( )
p p

F F G G= =σ σ σ σɶɶ ɶ ɶ    (1.12) 

Where the transformed stress pσɶ  is deduced from σ with the set of parameters ( , )p p

N T
a a . The 

plastic yield rule reads:  

( 0F ≤σ)ɶ ,         
p G∂= λ

∂
ε

σ

ɶ
ɺɺ     (1.13) 

with the standard conditions for λɺ :  0, and 0 if ( 0Fλ ≥ λ = <σ)ɺ ɺ ɶ . 

The criterion F and potential G are the Mohr-Coulomb or Drucker-Prager according to the 

11
th

 variable Option:  

 

Option 0: Mohr-Coulomb Criterion 

 

If Option = 0,  F and G are the Mohr-Coulomb criterion and non-associate potential for the 

parameters C, φ , ψ and σΤ   (see the model 31120). 

 

    1 3 1 3( ) sin cos 0
2 2

p p p p
pF C

σ − σ σ + σ= + φ − φ ≤σ
ɶ ɶ ɶ ɶ

ɶ   (1.14) 

1 3 1 3( ) sin
2 2

p p p p
pG

σ − σ σ + σ= + ψσ
ɶ ɶ ɶ ɶ

ɶ     (1.15) 

 

The Uniaxial Compressive Strength is then given by: 

( )
1 2 cos

( )
1 sin

c

UCS

C
R

φθ =
− φβ θ

   (1.16) 

Where: 

If  2

T N
f f> , or  bT > 0 :  

( ) ( ) ( )2
2 2 2 2

1 sin 4 sin cos 1 sin sin

1 sin

N T N

UCS

a b a+ θ + θ θ − + θ φ
β θ =

− φ
 (1.17) 

If  2

T N
f f< , or  bT < 0 :  

( ) ( )( )2
2 2 2 21

1 sin 1 sin 4 sin cos
2

UCS N N Ta a b
 β θ = + θ + + θ + θ θ 
 

 (1.18) 

For the special case 2

T N
f f= , or bT = 0 , one finds: 

bT = 0   →     ( ) 21 sin
UCS N

aβ θ = + θ   (1.19) 

 

This allows defining the adequate anisotropic UCS for a variety of rock-type materials. Two 

examples are given in the figures below for a rock with a weak anisotropy of UCS and a 

jointed rock with high UCS anisotropy. 



DISROC Materials’ Catalogue 

 

Fracsima - 2016                                                                     www.fracsima.com 

 

42

 

Note that in all cases ( ) ( )0 1, / 2
UCS UCS N

fβ = β π =  and this allows determining fN or aN. Then 

fT  or bT can be determined or by considering the strength reduction in another direction, and 

instance in the direction θ=ω +π/4. 
 

Example 1 : Rock with weak anisotropy 

Consider a bedded or schistose rock with bedding plane making and angle ω with the x1-axis 

of coordinates. Suppose that triaxial tests for compression axis parallel to the bedding plane 

have determined the cohesion C and friction angle φ so that the UCS in direction parallel to 

the bedding plane is 
2 cos

( )
1 sin

c

C
R

φω =
− φ

. Then suppose that a UCS different with a factor 1/β is 

measured in the direction perpendicular to the bedding plane: 

1
( ) ( )

2
c c

R R
πω+ = ω

β
 

Then, we can take 1p

Na = β −  and 0p

Tb =  to obtain an ellipsoidal shape of UCS in different 

directions for this rock (see Figure below left). 

 

Example 2 : Jointed Rock 

Consider a sedimentary or fractured rock mass with weakness planes making and angle ω 

with the x1-axis of coordinates. Suppose that the strength criterion of the weakness planes or 

rock joints be given by a cohesion c
j
 and friction angle φj

 : 

tan
j j

n
cτ = σ φ +     (1.20) 

Generally in this case the strength criterion of intact rock is assumed isotropic but in order to 

write a more general relation, we assume the UCS of the intact rock in the jointing direction is 

(1+aN) time the strength in the perpendicular direction, with the possibility of taking aN =0 for 

the isotropic intact rock matrix. The parameter bT can be determined by considering the UCS 

in the direction making π/4 with the jointing plane. In this case we have / 4θ = π  and on the 

joint plane we have: 
2sin cos / 2 , sin / 2

n
τ = σ θ θ = σ σ = σ θ = σ   

2
tan

1 tan

j
j j

n j

c
cτ = σ φ + → σ =

− φ
 

So the expected compressive strength for / 4θ = π
 

is given by: 

2
( / 4)

1 tan

j

c j

c
R π =

− φ
    (1.21) 

Note that the expected ( / 4)cR π  can result from theoretical calculation (1.21) or from 

experiment by testing samples oriented π/4 to the jointing plane. The compressive strength in 

the direction parallel to the jointing plane ( 0θ = ) is that of the intact rock and given by 

2 cos
(0)

1 sin
c

C
R

φ=
− φ

    (1.22) 

Then we note: 

/4

(0) 2 cos / (1 sin )

( / 4) 2 / (1 tan )

UCS c

j j

c

R C

R c
π

φ − φβ = =
π − φ

  (1.23) 

The strength of the jointed rock in direction / 4θ = π is in principle smaller than that of the 

intact rock and so βπ/4 should be greater than 1 and then equation (1.17) with bT >0 must be 

considered.  For / 4θ = π this equation provides: 
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( ) ( ) ( )2
1 / 2 1 / 2 sin

/ 4
1 sin

N T N

UCS

a b a+ + − + φ
β π =

− φ
  (1.24) 

By solving the equation ( ) /4/ 4
UCS

UCS πβ π = β  one finds: 

 

( ) ( ) ( )( ) ( )2 22

/4 /41 / 2 1 / 2 sin 1 sinUCS UCS

T N N
b a aπ π

 = β − + − β − + φ − φ  
  (1.25) 

 

And for the simple case of isotropic intact rock (aN=0,  fN=1): 

 

( ) ( ) ( )2 2

/4 /41 1 sin 1 sin
UCS UCS

Tb π π
 = β − − β − φ − φ  

  (1.26) 

 

See an example of the UCS of this type of jointed rock in the figure below right. 

 
 
 

 

 

          

ω 

X1 

X2 

x1 

x2 

1 

1/fN 

   

 
 

 

 

          

ω 

X1 

X2 

x1 

x2 

1 

1/fN 

 
           (a)       (b) 
Figure: Different cases of UCS anisotropy: (a) Weak anisotropy for rock matrix:  ω=18°, 0.4p

Ta = , 0p

Tb =  and 

(b)  anisotropic UCS for a jointed rock: ω=18°, 0.4p

Ta = , 1.5p

Tb =  

 

Also the criterion is truncated by the traction limit σT (see the material 31120). Note the 

transformed stress pσɶ  will be compared to σT and so the tensile strength will be anisotropic in 

the same way that the plastic criterion. 

 

Options 1,2,3 : Drucker-Prager Criterion 

 

If  Option = 1,2,3  F and G are the Drucker-Prager criterion and non-associate potential for 

the parameters K, αφ  and αψ defined as follows: 

 

Option =1:  External corners:    
6 cos 2sin 2sin

, sin , sin
3 sin 3 sin 3 sin

C
K φ ψ

φ φ ψ= α = α =
− φ − φ − ψ

  (1.27) 
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Option =2:  Internal corners:    
6 cos 2sin 2sin

, sin , sin
3 sin 3 sin 3 sin

C
K φ ψ

φ φ ψ= α = α =
+ φ + φ + ψ  

 (1.28) 

Option =3: Tangent to faces:
2 2 2

3 cos sin sin
, sin , sin

3 sin 3 sin 3 sin

C
K φ ψ

φ φ ψ= α = α =
+ φ + φ + ψ

 (1.29) 

 

 

 
Equivalent Drucker-Prager parameters for Mohr-Coulomb: Option 1: circle 

passing by external corners (green circle), Option 2: passing by internal corners 

(red circle), Option 3: tangent to faces (dashed-line circle). 

 

F is Drucker-Prager criterion calculated with the transformed stress p

e
σɶ  and the parameters K, 

αφ  and Gɶ  is the plastic potential with a different dilatancy angle αψ : 

 

( ) ( ) sin
p p p

eF F I Kφ= = σ + α −σ σɶ ɶɶ ɶ   ,        ( ) ( ) sinp p p

eG G Iψ= = σ + ασ σɶ ɶɶ ɶ
   

(1.30) 

p

eσɶ  and p
Iɶ  are the equivalent stress and the first invariant associated to pσɶ : 

For Drucker-Prager case (options 1,2,3), the tensile strength truncation σT will not be taken 

into account. 

 

Option 4 : Plane Mohr-Coulomb Criterion 

 

If  Option = 4  F and G are the Plane Mohr-Coulomb criterion and non-associate potential for 

the parameters C, φ , ψ and σΤ   (see the model 31120). In Plane Mohr-Coulomb (PMC) 

criterion, the out-of-plane stress is not considered or, equivalently, is supposed to be the 

intermediate principal stress. The extreme principal stresses are deduced from the stress 

components (σxx, σyy, σxy): 

( )

( )

2 2

1

2 2

3

4

2

4

2

xx yy xx yy xy

xx yy xx yy xy

σ + σ + σ − σ + σ
σ =

σ + σ − σ − σ + σ
σ =

   (1.31) 

And with these stresses, calculated from the transformed stress tensor, the criterion F and 

plastic potential G are the same that (1.14) and (1.15) for the Mohr-Coulomb option. 
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The tensile strength truncation σT is taken into account in this PMC material. 

  

 

Softening plasticity 
 

The cohesion C, the tensile strength σT and the angle φ in the here-above relations can vary 

with the plastic shear strain γ. The evolution is given by the hardening law (including 

softening as negative hardening) depending on three additional parameters: the residual 

cohesion Cr, the residual friction angle φr and the brittleness parameter B. Two parameters of 

cohesion and tensile strength reduction ηc and friction angle reduction ηφ are defined as 

follows: 

     
tan

1 1 , 1
tan

r T r
c

i Ti i

C

C
φ

σ φη = − = − η = −
σ φ

  (1.32) 

Ci is the initial or intact cohesion, σTi the initial tensile strength and φi the initial friction angle 

which are constant parameters of the material. For simplicity of notation, they are designated 

by C, φ and σT in the list of parameters below (Param7, Param8 and Param10). 

 

The cumulated plastic strain γ includes contributions from the plastic shear strain and from 

the plastic extension. Irreversible shear can degrade the cohesion of the material. Positive 

values of diagonal components of the plastic strain, representing extensional deformation 

created by tensile stresses, can also contribute to decohesion of the material. So γ includes two 

types of contributions and it affects also the cohesion C of the material as well as it tensile 

strength σT. It is calculated in the following way: 

2

s Tγ + γγ =
ɺ ɺ

ɺ     (1.33) 

The shear contribution part sγɺ  is calculated from the deviatoric plastic strain increment peɺ  by 

the following relations: 

  
 

 

2
:

3

p p

s
γ =ɺ ɺ ɺe e

      

1
, :

3

p p p p p

v v= − ε εe ε δ = ε δ ɺ ɺɺ ɺ ɺ   (1.34) 

The traction part Tγɺ  is calculated from the positive eigenvalues of the plastic strain rate 

tensor. The three eigenvalues are 
33

pεɺ  and the two in-plane values: 

       
( ) ( ) ( ) ( )2 2 2 2

11 22 11 22 12 11 22 11 22 124 4

2 2

p p p p p p p p p p

p p

+ −

ε + ε + ε −ε + ε ε + ε + ε −ε + ε
ε ε

ɺ ɺ ɺ ɺ ɺ ɺ ɺ ɺ ɺ ɺ

ɺ ɺ= , =     (1.35) 

And Tγɺ  is the sum of the positive values of these eigenstrains: 

33 33

2 2 2

p p p p p p

T

+ + − −ε + ε ε + ε ε + ε
γ = + +

ɺ ɺ ɺ ɺ ɺ ɺ

ɺ   (1.36) 

It can be noted that for a: 

Simple shear: 

12

12 12 12 12

0 0
2 1 1

0 0 , ,
23 3

0 0 0

p

p p p p p

s T

 ε
  ε → γ = ε γ = ε → γ = + ε  
  

 

ɺ

ɺ ɺ ɺ ɺ ɺ ɺ ɺ ɺε =    (1.37) 

And if the plastic strain is traceless ( 0)
p

tr =ɺε then for uniaxial traction or compression: 
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11

11

11

0 0

0 / 2 0

0 0 / 2

p

p p

p

 ε
 −ε 
 −ε 

ɺ

ɺ ɺ

ɺ

ε =     (1.38) 

Then for: 

Simple traction:  11 11 11 110 ,p p p p

s Tε > → γ = ε γ = ε → γ = εɺ ɺ ɺ ɺ ɺ ɺ ɺ     (1.39) 

 

Simple compression:  11 11 11 110 ,p p p p

s Tε < → γ = ε γ = ε → γ = εɺ ɺ ɺ ɺ ɺ ɺ ɺ   (1.40) 

 

The evolution of C, φ and the tensile strength σT in ANELVIP is calculated in a general way 

by: 

 

( ) ( ) ( )( ) 1 , ( ) 1 , tan ( ) 1 tanc i T T T i iC V C V Vφγ = − σ γ = − σ φ γ = − φ        (1.41) 

 

where Vc , VT and Vφ are internal variables of the material. Theses internal variables are 

calculated from the cumulated plastic strain γ by the following relations:  

 

   ( ) ( ) ( )( ) 1 , ( ) 1 , ( ) 1B B B B

c c T cV e M e V e V e− γ − γ − γ − γ
φ φγ = η − − γ γ = η − γ = η −      (1.42) 

 

B is a positive parameter characterizing the brittleness of the material: the decrease of the 

strength parameters C, φ and σT is faster for greater B. The friction angle and the tensile 

strength can only decrease whereas the cohesion evolution depending on the parameter M, 

and so the compression curve, can present a positive hardening phase and a peak value. 

 

If M < B, the cohesion C(γ) is always decreasing, but if M > B then C(γ) starts by increasing 

and attains, for a cumulated shear denoted by γpeak a maximum value denoted by Cpeak. These 

values can be determined by derivation of the first relation in (1.42) and one finds: 

 

1

1
, 1 c

peak peak c ig

g
C C

gM ge
−

 − ηγ = = − η + 
 

   (1.43) 

where:      
B

g
M

=     (1.44) 
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Figure: Stress-Strain curves for a uniaxial compression test on Anelvip elastoplastic material 

with different softening parameters.  

 

The perfect plastic material is obtained by posing ηc=ηφ=0. In this case no evolution is 

calculated for C, φ and σT and B is not used. 

 

Note: The softening behavior leads to localization and mechanical instabilities which can well 

be modeled in Disroc with this Anelvip model. The localization in a sample affects its 

nominal stress-strain curve. The curves in the figure above are obtained on a FEM model with 

one only (quadrilateral) element in order to avoid localization effects.     

 

Determination of softening parameters 
 

The two equations (1.43) and (1.44) allow determining the two parameters B and M from γpeak 

and Cpeak values given by the experimental curves. 

 

However, different methods can be used to determine these two parameters depending on 

which aspect of experimental curves is more important to reproduce more accurately. 

 

A first method could be to determine B from the variation of C if pure shear test data are 

available or from the variation of σT if simple traction curves are available. This can happen if 

numerical homogenization test data are being analyzed. After B is determined it is easier to 

determine M  from (1.43), (1.44) and γpeak value (see below for estimation of γpeak).   

     

If only simple compression test data are considered for determination of B and M then 

different methods can be used. For instance, let σi designate the elastic stress limit (the end of 

the elastic stage) and σpeak for the maximum stress (Figure) and suppose that the friction angle 

remains constant (ηφ=0). From the relation between the UCS and the cohesion, Rc=2Ccosφ/(1-

sinφ), one finds: 

0

5

10

15

20

25

30

35

40

45

0.00 0.02 0.04 0.06 0.08 0.10 0.12

(1) 0, 0, 0, 0

(2) 0.3, 0, 100, 0

(3) 0.3, 0, 100, 200

(4) 0.3, 0, 80, 400

(5) 03, 0.4, 60, 0
(2)

(3)

(4)

(5)

E=1000,  C=7 , φ = 40° → UCS = 30

ε

ηc , ηφ , B, M



DISROC Materials’ Catalogue 

 

Fracsima - 2016                                                                     www.fracsima.com 

 

48

peak peak

i i

C

C

σ
=

σ
    (1.45) 

 
 

 

σ 

ε 

Ε 

σpeak 

εpeak 

σi 

γpeak 

εe
peak 

 
   Figure: Determination of γpeak and σpeak from experimental curves 

 

Also, if the axial strain at the peak stress is εpeak then: 

 

γpeak = εpeak - σpeak/ E   (1.46) 

 

Note that this relation is valid only for a uniaxial compression with monotonic loading and 

with E the Young’s modulus in the compression direction. In addition, this relation supposes a 

constant friction angle and also the expression (1.38) of the traceless plastic strain. These 

assumptions are not always satisfied and specially the last one, (1.38), is not true for Mohr-

Coulomb and Drucker-Parger criteria with associate flow rule. In these cases, the equations 

(1.45) and (1.46) must be considered as approximate relations allowing to determine a first 

trial set of values for B and M and then determine more accurate values for these parameters 

by numerical simulation of theoretical curves and comparison to the experimental ones. 

 

From the equation (1.43) one can deduce: 

1 gc i

peak i c i

C
ge

C C C

−η =
− + η

  (1.47) 

The value of the expression at the left side of (1.47) can be determined from experimental 

data. But this equation can not be solved explicitly to determine g. The following figure 

allows finding g from the left-side value of (1.47).     
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1 x
y xe

−=

x 

y 

 
  Figure: The function allowing to determine g 

 

Once g has been determined, B and M can be determined from γpeak by: 

      

    
1

peak

g
B

−=
γ

 ,       
1

peak

g
M

g

−=
γ

   (1.48) 

However, as mentioned here above the determination of γpeak  is not easy in the general case. 

It can be determined by an iterative method:  

First, with starting with the value given by (1.46), a first estimate for B and M  is determined 

by (1.48). Then the theoretical curve obtained by these parameters is compared to the 

experimental one. The εpeak is easily determined from the experimental curve. γpeak and εpeak 

vary in the same way. So if the theoretical εpeak is smaller than the experimental one, a greater 

value for γpeak is adopted to determine new values for B and M. The process is repeated until 

sufficiently precise values are determined for these parameters.  

 

 

 

II) Viscous deformation 

 
An anisotropic extension of the isotropic creep law can be defined by making anisotropic both 

the strain rate and the stress threshold with two different sets of aN and aT denoted by 

( , )v v

N T
a a  for viscous set and ( , )p p

N T
a a  for plastic model or stress threshold: viscous strain 

rate will be multiplied by βv
 and the stress threshold divided by  βp

 (Figure). 
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Indicator surface of 1/β p
   Indicator surface of β v

  

 

 

If the uniaxial stress σθ is applied in a direction making an angle θ with respect X1 then the 

axial creep strain εθ measured in this direction is assumed to be:   

 

( ) ( ) ( )v p n

c
t a t

α
θ θε = β θ < β θ σ − σ >    (1.49) 

 

where a, n, α, σc  are four material constants, βv
(θ) and βp

(θ) two direction dependency 

coefficients for the stain rate and the stress threshold and the positive part  function <
.
> is 

defined as: 

< x > = 0     if     x < 0 

< x > = x     if     x ≥ 0 

 

The four parameters a, n, α, σc can be identified from uniaxial creep results If α =1, the 

Norton-Hoff creep model is recovered. 

 

The incremental constitutive equation for creep function (1.49) is written by introducing the 

auxiliary parameter ξ and the transformed stresses , ,p v v

e eσ σ Sɶɶ ɶ  with: 

( )1/
v p n

e c
a

α
ξ = β < σ − σ >ɺ ɶ    (1.50) 

And      
13

2

v
v

v

e

α−= α ξ ξ
σ
Sε
ɶ

ɺɺ

ɶ
    (1.51) 

 To avoid numerical problems near ξ = 0, the law is completed by: 

    
1

0

3

2

v
v

v

e

α−= α ε ξ
σ
Sε
ɶ

ɺɺ

ɶ
    if    ξα

 ≤  ε0   (1.52) 

Thus an additional parameter ε0 is introduced. The transformed stresses , ,
v v v

e
σSσ ɶɶ ɶ  are 

defined by transformation with ( , ) ( , )v v

N T N T
a a a a= . The viscosity anisotropy parameter β is 

defined by the same expression (1.9),(1.10) but with parameters ( , )v v

N T
a a : 
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v
v e

e

σβ =
σ
ɶ

     (1.53) 

The transformed stresses , ,p p p

eσSσ ɶɶ ɶ  are defined by transformation with ( , ) ( , )p p

N T N T
a a a a=

 
Thus, the anisotropy is defined by two sets of parameters ( , )v v

N T
a a

 
and. ( , )p p

N T
a a . 

 

Note that if the stress threshold σc is greater than plastic strength then no viscous strain will 

be produced because the stress remaining in the elastic domain defined by the plastic criterion 

cannot exceed σc. 

 

 

Nb = 24 

Param1 = E1 

Param2 = E2 

Param3 =  ν12 

Param4 =  ν13 

Param5 =  µ12 

Param6 =  ω (in degrees) 

Param7 = C    (Ci if evolution) 

Param8 =  φ (in degrees) 

Param9 = ψ (in degrees) 
Param10 = σT 

Param11 = Mohr-Coulomb/Drucker-Prager Option) (MC:0, DPe:1, DPi:2, DPf:3, PMC:4) 
Param12 = a

p
N 

Param13 = b
p

T 

Param14 = a     (attention to the stress and time units) 

Param15 = n 

Param16 = α 

Param17 = σc 

Param18 = a
v
N 

Param19 = b
v
T 

Param20 = ε0 

Param21 = ηc   (cohesion reduction) 

Param22 = ηφ   (friction angle reduction) 

Param23 = B    (plasticity brittleness) 

Param24 = M    (positive hardening parameter) 

 

Note  

• If C ≥ 10E1 no plastic strain will be calculated (the model becomes viscoelastic). The 

parameters 6, 7 and 11 have no effects. But a
p

N and a
p

T can be used for viscous strain.  

• If a =0, no viscous strain will be calculated (the model becomes elastoplastic). The 

parameters 13 to 18 will not be used.  

 

• If ηc=ηφ=0 no hardening or softening evolution for C et φ and B is not used. 

 

 

Internal Variables: 

Vin(n,1): reserved for damage (not existing for this material) 

Vin(n,2) : ξ, internal 
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Vin(n,3): Plastic shear deformation γ 

Vin(n,4) : Reduction factor for cohesion, Vc 

Vin(n,5) : Reduction factor for friction angle, Vφ 

Vin(n,6) : Reduction factor for tensile strength, VT 

 

 
 

 

 

 

  

31430          ANELVIP: Anisotropic ElastoViscoPlasticity 

          Mohr-Coul.(0)/Druck.-Prag.(1,2,3)+ Creep 

Nb: 24 

Param1 = E1    Param13 = b
p

T 

Param2 = E2     Param14 = a 

Param3 =  ν12     Param15 = n 

Param4 =  ν13    Param16 = α 

Param5 =  µ12    Param17 = σc 

Param6 =  ω (in degrees)   Param18 = a
v
N 

Param7 = C     Param19 = b
v
T 

Param8 = φ  (in degrees)   Param20 = ε0 
Param9 = ψ (in degrees)  Param21 = ηc 

Param10 = σT    Param22 = ηφ 

Param11 =Option (01,2,3,4)  Param23 = B 

Param12 = a
p

N   Param24 = M 
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31600   : Elastic-Damage material with modified 

Drucker-Prager softening criterion  
 

Note: Model to be developed. Not available! 

Isotropic elasticity with damage:  

1
( )

(1 ) (1 )
tr

E D E D

+ ν ν=
− −

ε σ - σ δ  

Damage criterion: 

[ ]

2 2 2
1

2 1

0

( , ) s in

3 , ( )

( ) (1 ) (1 ) 1 ln(1 ) ,

e

e

r
r r r

F D b g I gK

J I tr

g D D D

= σ + + α −

σ = =
σ= η + − η − − β − η =
σ

σ

σ  

 

 σ  

σ0 

ε0  ε 

σr 

 
 

Nb = 7 

Param1 = E 

Param2 = ν 

Param3 = sin α 

Param4 = K 

Param5 = β 

Param6 = ηr 

Param7 = b 

Variable interne   

Vin(n,1) : D 

Condition :     b cos α < Κ     must be satisfied. 

 

 

0
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0.4
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σ
/σ

0
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1
0.75

0.5

31600  Elastic-Damage material with modified  

  Drucker-Prager softening criterion 

Nb: 7 

Param1 = E 

Param2 = ν 

Param3 = sin α 

Param4 = K 

Param5 = β 

Param6 = ηr   Condition :   b cos α < Κ      

Param7 = b 
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I.4) Mechanics  -    ANCHORS   

 
 

41100   : Elastic Rock Anchor 

    

 

Fb Bolt 

 
Note: For the section S to take into account the same remarks that for bar elements (material 

model 11100) are valid. The stiffness parameters Kt, Kn and Ktn here take into account the 

circumference of the steel rod as well as the number of anchors per unit thickness of the 

model. For instance, if the grout filling the space between the rod and the rock has a thickness 

e and a shear modulus µ, then it correspond to a physical stiffness µ/e (see the material 

21100). Then if the rod has a diameter D then the Param2 = Kt = πD µ/e. In addition, if in the 

unit thickness of the plane of the model there are n anchors (see the note for the bar elements 

11100), then Param2 = Kt = n πD µ/e. The same method is to be applied to Kt and Ktn. 

 

Nb = 5 

Param1 = ES    (Young’s modulus (steel) × section) 

Param2 = Kt   (tangent stiffness) 

Param3 = Kn  (normal stiffness) 

Param4 = Knt = Ktn   (non diagonal stiffness term causing dilatancy) 

Param5 = F0 (prestress force) 

 

 
 

 

 

41100  Elastic Anchor 

 

Nb: 5 

Param1 = ES    (Young’s modulus (steel) × section) 

Param2 = Kt   (tangent stiffness) 

Param3 = Kn  (normal stiffness) 

Param4 = Knt = Ktn   (non diagonal stiffness term causing 

dilatancy) 

Param5 = F0 (prestress force) 

Axial deformation of the anchor rod:  0b
F F

ES

−ε =
 

 Fb axial force in the rod,   

 F0 prestress axial force,   

 

 

 

Elastic contact between rod and rock : σ = K u  

(the same model 21100) 
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41110   : Elastic-Plastic Rock Anchor 
 

Axial deformation of the anchor rod:   0p b
F F

ES

−ε − ε =  

In monotonic loading  εp
 < 0 if Fb < Ys where: 

 Ys = σy S  with  σy the plastic limit stress of the rod (steel) and S the rod section 

 

Contact between rod and rock : σ = K (u – u
 p

) 

Plastic criterion for rod-rock contact: ( ) t an 0nf cσ = τ + σ φ − ≤  

 

Contact model: the same that the model 21120 

 

Nb = 8 

Param1 = ES    (Young’s modulus (steel) × section) 

Param2 = Kt   (tangent stiffness) 

Param3 = Kn  (normal stiffness) 

Param4 = Knt = Ktn   (non diagonal stiffness term causing dilatancy) 

Param5 = Ys (plastic limit for the axial force in the anchor) 

Param6 = C  (cohesion) 

Param7 = φ  (in degrees, the friction angle) 

Param8 = F0 (prestress force) 

 

Note:  The method of calculation of S, Kt, Kn, Ktn and Ys is the same that for materials 41100 

et 11110. The cohesion parameter C is the product of the physical cohesion of the contact 

between the rod and the rock (cohesion of the grout material) and the circumference of the 

rod, and also the number of anchors per unit thickness of the plane model (see materials 

41100 and 11100). The angle φ  is the friction angle (in degrees) of the contact (or the grout 

material). 

 

 
  

41110  Elastic-Plastic Anchor 

 

Nb: 8 

Param1 = ES    (Young’s modulus (steel) × section) 

Param2 = Kt   (tangent stiffness) 

Param3 = Kn  (normal stiffness) 

Param4 = Knt = Ktn   (non diagonal stiffness → dilatancy) 

Param5 = Ys (plastic limit for axial force in the anchor) 

Param6 = C  (cohesion) 

Param7 = φ  (in degrees, the friction angle) 

Param8 = F0 (prestress force) 
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41310   : Elastic-Damage Rock Anchor 
 

Axial deformation of the anchor rod:   0p b
F F

ES

−ε − ε =  

In monotonic loading  εp
 < 0 if Fb < Ys where: 

 Ys = σy S  with  σy the plastic limit stress of the rod (steel) and S the rod section 

Contact between rod and rock : 

    σ = (KD + kr) (u – u
 p

)  

With: 

         
1 0

0

t

D

n

D K

K

− 
=  
 

K
( )

  , 
0

0 0

rt

r

k =  
 

k
    0

p
p t

u
u

 
=  
 

 

 

Damage criterion for rod-rock contact: F D g D Cσ = τ −( , ) ( )  

With:       ( )1 1 1( ) ( ) ( )g D D ln D= − − β −  

 

The plastic deformation of the contact takes place after the complete damage. The plastic 

criterion is: 
p

r
F Cσ = τ −( )  

Note: The strength parameter takes into account, in the same way that C, the circumference of 

the rod and the number of anchors per unit thickness of the model (see the model 41110). 

 

Nb = 9 

Param1 = ES    (Young’s modulus (steel) × section) 

Param2 = Kt   (tangent stiffness) 

Param3 = Kn  (normal stiffness) 

Param4 = Ys (plastic limit for the axial force in the rod) 

Param5 = C  (cohesion) 

Param6 = Cr (residual cohesion) 

Param7 = β  (ductility) 

Param8 = krt (residual tangent stiffness) 

Param9 = Option (1 if plasticity taken into account) 

 

Internal variable   

Vin(n,1) : D 
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41310  Elastic-Damage Anchor 

 

Nb = 9 

Param1 = ES    (Young’s modulus (steel) × section) 

Param2 = Kt   (tangent stiffness) 

Param3 = Kn  (normal stiffness) 

Param4 = Ys (plastic limit for the axial force in the rod) 

Param5 = C  (cohesion) 

Param6 = Cr (residual cohesion) 

Param7 = β  (ductility) 

Param8 = krt (residual tangent stiffness) 

Param9 = Option (1 if plasticity taken into account) 
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51100   : Elastic Beam 
 

The efforts in elastic beam are the axial force F, the shear force V and the bending moment M. 

They are related to the axial strain ε  and the rotation θ  by: 

 

   ,
d

F ES M EI
ds

θ= ε =  

The shear force is related to M by V = -dM/dx  where x designates the position x along the 

beam.   

 

Nb = 2 

Param1 = ES   : Young’s modulus (steel) × S (section) 

Param2 = EI   : Young’s modulus (steel) × I (moment of inertia) 

 

Note: The 2D plane modeling, a unit the thickness of the model is considered in relation with 

a 3D modeling. The section S and the inertia moment I are supposed to correspond to a unit 

thickness of the model. If there are more or less one beam per unit thickness, these parameters 

must be multiplied by the number of beams by unit thickness (see for the bar element 11100). 

 

 

 
  

51100  Elastic Beam 

 

Nb: 2 

Param1 = ES   : Young’s modulus (steel) × S (section) 

Param2 = EI   : Young’s modulus (steel) × I (moment of 

  inertia) 
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61100   : Elastic Bolt (beam + contact interface) 
 
Bolt is anchor element with bending and shear effects for the steel rod. The steel rod is 

modeled as beam element and the contact between the rod and the rock, modeled by a joint 

element. 

The efforts in elastic beam are the axial force F, the shear force V and the bending moment M. 

They are related to the axial strain ε  and the rotation θ  by: 

   ,
d

F ES M EI
ds

θ= ε =  

The shear force is related to M by V = -dM/dx  where x designates the position x along the 

beam (the same model 51100).   

 

Elastic contact between rod and rock : σ = K u  

(the same model 21100, 41100) 

 

Nb = 5 

Param1 = ES    Young’s modulus (steel) × section 

Param2 = EI    : Young’s modulus (steel) ×  

Param3 = Kt   (tangent stiffness) 

Param4 = Kn  (normal stiffness) 

Param5 = Knt = Ktn   (non diagonal stiffness term causing dilatancy) 

 
Note: For the section S and the moment of iniertia to take into account the same remarks that 

for bar elements. 

 

 
 

 

61110   : Elastic Bolt with elastoplastic contact 
 
Bolt is anchor element with bending and shear effects for the steel rod. The steel rod is 

modeled as beam element and the contact between the rod and the rock, modeled by a Mohr-

Coulomb elastoplastic contact interface. This model is the extension of the model 61100 to 

the plasticity of the interface or of the cable model 41110 to accounting for bending moment 

but without plasticity of the steel rod and without pre-stress . 

 

The efforts in elastic beam are the axial force F, the shear force V and the bending moment M. 

They are related to the axial strain ε  and the rotation θ  by: 

61100  Elastic Bolt (beam + contact interface) 

 

Nb: 5 

Param1 = ES    Young’s modulus (steel) × section 

Param2 = EI    : Young’s modulus (steel) × intertia 

Param3 = Kt   (tangent stiffness) 

Param4 = Kn  (normal stiffness) 

Param5 = Knt = Ktn   (non diagonal stiffness → dilatancy 
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   ,
d

F ES M EI
ds

θ= ε =  

The shear force is related to M by V = -dM/dx  where x designates the position x along the 

beam (the same model 51100).   

 

Contact between rod and rock : σ = K (u – u
 p

) 

Plastic criterion for rod-rock contact: ( ) t an 0nf cσ = τ + σ φ − ≤  

 (the same model 21120, 41110) 

 

Nb = 5 

Param1 = ES    Young’s modulus (steel) × section 

Param2 = EI    : Young’s modulus (steel) ×  

Param3 = Kt   (tangent stiffness) 

Param4 = Kn  (normal stiffness) 

Param5 = Knt = Ktn   (non diagonal stiffness term causing dilatancy) 

Param6 = C  (cohesion of the steel-rock contact) 

Param7 = φ  (in degrees, the friction angle of the contact) 

 
Note: For the section S and the moment of inertia to take into account see the same remarks 

that for bar elements. For the paremeters Kt, Kn, Ktn and the cohesion C see the same remark 

that for the material 41110. 

 

 

 
 

  

61110  Elastic Bolt (beam + contact interface) 

 

Nb: 7 

Param1 = ES    Young’s modulus (steel) × section 

Param2 = EI    : Young’s modulus (steel) × inertia 

Param3 = Kt   (tangent stiffness) 

Param4 = Kn  (normal stiffness) 

Param5 = Knt = Ktn   (non diagonal stiffness → dilatancy 

Param6 = C  (cohesion) 

Param7 = φ  (in degrees, the friction angle) 
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II) Hydraulic 
 

II.1) Hydraulic  - BOREHOLES & TUBES  
(associated hydraulic model for bars, beams, anchors and bolts) 

 

12100   : Borehole : Steady state flow 

 
The pressure in the borehole is the same that at its wall for the surrounding porous matrix. 

This model is suitable for calculating steady state flow. 

  

Constitutive law:    q = -Ct ∇p 

q : debit in the tube,   ∇p : fluid pressure gradient along the tube line 

Nb = 1 

Param1 = Ct  (tangent or longitudinal conductivity)  

 

Note: q is the integral of the fluid velocity in the section of the tube (q = ve). 

Tube elements are the hydraulic model associated to bar elements (Mechanics). If bar 

elements are present in the mechanical model, they will be present also in the hydraulic mesh 

and their hydraulic model must be specified. Put Ct = 0 if they have no contribution to 

hydraulic flow. 

 

 
 

12110   : Borehole : Transient flow 

 
The pressure in the borehole is the same that at its wall for the surrounding porous matrix. 

This model allows calculating transient flow. 

 

Constitutive law:    q = -Ct ∇p ,     .( )M t

p
C C p

t

∂ = ∇ ∇
∂

 

q : debit in the tube,   ∇p : fluid pressure gradient along the tube line 

Nb = 2 

Param1 = Ct  (tangent or longitudinal conductivity) 

Param2 = CM   (storage coefficient) 

  

 

Note: See the note for the material 12100 

 

12100  Borehole: Hydraulic model steady state 

  

 

Nb: 1 

Param1 = Ct  (tangent or longitudinal conductivity)  



DISROC Materials’ Catalogue 

 

Fracsima - 2016                                                                     www.fracsima.com 

 

62

 

 

 

12200   : Tube : Steady state flow 

 
The pressure inside the tube is different from the pressure on its outside wall for the 

surrounding porous matrix. This model is suitable for calculating steady state flow. 

 

Constitutive law:     q = -Ct ∇P    ,       ( ) ( ). 0
t n

C P C p P∇ ∇ + − =  

P : pressure inside the tube which can be different from the outside pressure 

∇P : fluid pressure gradient along the tube line 

p : pressure outside the tube 

q : debit in the tube,   ∇p : fluid pressure gradient along the tube line 

  

Nb = 2 

Param1 = Ct  (tube longitudinal conductivity) 

Param2 = Cn   (wall-through conductivity, zero if impervious wall) 

 

 
Note: For this model the pressure is continuous in the matrix when crossing the tube but 

different from the pressure inside the tube. 

 

 
 

 

12210   :  Tube : Transient flow 

 
The pressure inside the tube is different from the pressure on its outside wall for the 

surrounding porous matrix. This model allows calculating transient flow. 

 

Constitutive law:    q = -Ct ∇P  ,       ( ) ( ).M t n

P
C C P C p P

t

∂ = ∇ ∇ + −
∂

 

P : pressure inside the tube which can be different from the outside pressure 

∇P : fluid pressure gradient along the tube line 

p : pressure outside the tube 

12200  Tube : Hydraulic model for steady state 

flow  

 

Nb: 2 

Param1 = Ct  (tube longitudinal conductivity) 

Param2 = Cn   (wall-through conductivity) 

12110  Borehole: transient flow 

 

Nb: 2 

Param1 = Ct  (tangent or longitudinal conductivity) 

Param2 = CM   (storage coefficient) 
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q : debit in the tube,   ∇p : fluid pressure gradient along the tube line 

 
Nb = 3 

Param1 = Ct  (tube longitudinal conductivity) 

Param2 = Cn   (wall-through conductivity, zero if impervious wall) 

Param3 = CM   (storage coefficient) 

 

Note: See the note for 12200.  

 

 
 

  

12210  Tube : Hydraulic model for transient flow 

  

Nb = 3 

Param1 = Ct  (tube longitudinal conductivity) 

Param2 = Cn   (wall-through conductivity) 

Param3 = CM   (storage coefficient) 
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II.2) Hydraulic  - ROCKJOINTS & FRACTURES   

 
See the General Note 22210 at the end of this section explaining the parameters of interface 

model for flow. 

 

22100   : Hydraulic rock joint, infinite transverse 

conductivity  
 

Constitutive law:    q = -Ct ∇p 

q : debit in the fracture,   ∇p : fluid pressure gradient along the fracture line 

Nb = 1 

Param1 = Ct  (tangent conductivity)  

 

Note: Infinite transvers conductivity means that the pressure is the same on the two sides of 

the fracture or joint element. If the joint is assimilated to a thin layer of thickness e of a 

porous material with permeability k (see the material 32100), then the equivalent Ct would be 

Ct = ke and q would represent the integral of velocity in the section (thickness) of the fracture 

(q = ve). 

 

 
 

 

22110   : Transient hydraulic flow in rock joint, infinite 

transverse conductivity  
 

Constitutive law:    q = -Ct ∇p  ,    ( ).M t

p
C C p

t

∂ = ∇ ∇
∂

 

q : debit in the fracture,   ∇p : fluid pressure gradient along the fracture line 

Nb = 2 

Param1 = Ct  (tangent conductivity)  

Param2 = CM   (storage coefficient) 

 

Note: For the infinite transvers conductivity see the note for the material 22100 

 

22100  Hydraulic interface with infinite transverse 

conductivity 

 

Nb: 1 

Param1 = Ct  (tangent conductivity)  
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22200   : Hydraulic flow in rock joint, finite transverse 

conductivity 
 

Constitutive law:    q = -Ct ∇P ,     � �n n
V C p=  

q : debit in the fracture,   ∇p : fluid pressure gradient along the fracture line 

Vn: The fluid velocity perpendicular to the interface. Its is the average value of 

      the normal fluid velocity in the matrix on the two sides of the joint element. 

� �p : pressure discontinuity (jump) across the interface 

Nb = 2 

Param1 = Ct  (tangent conductivity) 

Param2 = Cn (transverse or normal conductivity) 

 
Note: For this model the pressure is discontinuous across the fracture (pressure jump between 

the two sides of the fracture). The only case with clear physical meaning is then the case 

Cn = 0 for witch the fracture acts as a barrier to the flow perpendicular to its surface. The 

variable P in   q = -Ct ∇P represents the mean value of the pressure on the two sides, (p
+
+ p

-

)/2.  The case Ct=0 corresponds to an empty joint with no flow through it. 

 

 
 

22210   : Transient hydraulic flow in rock joint, finite 

transverse conductivity 
 

Constitutive law:   q = -Ct ∇P  ,    � �n n
V C p= ,    ( ).M t

p
C C p

t

∂ = ∇ ∇
∂

 

q : debit in the fracture,   ∇P : fluid pressure gradient along the fracture line 

Vn: The fluid velocity perpendicular to the interface. Its is the average value of 

      the normal fluid velocity in the matrix on the two sides of the joint element. 

� �p : pressure discontinuity (jump) across the interface  

Nb = 3 

Param1 = Ct  (tangent conductivity) 

Param2 = Cn (transverse or normal conductivity) 

22200  Hydraulic interface with finite  

  transverse conductivity 

 

Nb: 2 

Param1 = Ct  (tangent conductivity) 

Param2 = Cn (transverse or normal conductivity) 

22110  Hydraulic interface with infinite transverse 

Conductivity, transient flow 

 

Nb: 2 

Param1 = Ct  (tangent conductivity)  

Param2 = CM   (storage coefficient) 
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Param3 = CM   (storage coefficient) 

 

 
 

General Note 22210: If the joint element represents a thin layer of thickness e constituted of 

porous material with permeability k and storage coefficient cm then its tangent and normal 

conductivities and storage coefficient CM  are given respectively by: 

 

Ct = k e ,    Cn = k/e  ,   CM = cm e 

For the permeability k and the storage coefficient cm of the bulk material see the note for the 

material 32100.  

 

The debit q corresponds to the integral of the fluid velocity on the layer section, and P is the 

average pressure in the layers: 

1
,q v de P p de

e
= =∫ ∫  

If the permeability is high and thickness small, there is continuity of pressure across the joint 

element (no pressure difference between the two sides). In this case an infinite value of Cn is 

to be modelled. To avoid numerical problems, in this case a new model is defined in Disroc 

(models 22100 and 22110) which implicitly supposes the pressure equality on the two sides 

and does not need a Cn value. On opposite, if Cn = 0 then the interface acts as a barrier to the 

flow perpendicular to its surface. 

 

If the joint element represents an assemblage of several thin layers of bulk materials (three 

layers in the figure) with which layer (i) having a thickness e
(i)

 , a permeability kt
(i)

 in the 

direction parallel to the layer and kn
(i)

 in the direction perpendicular to it and storage 

coefficient cm
(i)

, then the equivalent Ct  and Cn for the joint element are given by: 
( )

( ) ( ) ( ) ( )

( )

1
, ,

i
i i i i

t t m mi
i i in n

e
C e k C e c

C k
= = =∑ ∑ ∑  

 

 

 

 

          

e(i), kt
(i), kn

(i)
  

Cn 

Ct v q 

p+
 

p-
 

P 

vn
+

 

vn
 -

 

Vn 

 
 

Concerning the flow perpendicular to the fracture, we note that vn
+
  and vn

-
  are the flow in the 

matrix perpendicular to the fracture and Vn= (vn
+
+vn

-
)/2.  

 

22210  Hydraulic interface with finite  

  transverse conductivity 

 

Nb: 3 

Param1 = Ct  (tangent conductivity) 

Param2 = Cn (transverse or normal conductivity) 

Param3 = CM   (storage coefficient) 
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II.3) Hydraulic  - BULK MATERIALS    
 

 

 

32100  : Darcy flow with isotropic permeability 
 

 

Constitutive law:    v = -k ∇p 

 

v : fluid velocity in the porous material ,  ∇p : fluid pressure gradient vector 

 

 

k is a conductivity parameter which is called “permeability” for simplicity. It is related to the 

intrinsic permeability kin  and the Darcian permeability kDarcy by the following relations: 

Darcyin

f

kk
k

g
= =

µ ρ
 

Where µ is the dynamic viscosity and ρf  the specific mass of the fluid and g the gravitational 

acceleration.  

 

In SI system of units with v (m/s),   kin  (m
2
), µ (Pa.s),   ρf  (Kg/m

3
),  g (ms

-2
) and kDarcy (m/s), 

the parameter k  is expressed in m
2
/(Pa.s) or equivalently in (m/s)/(Pa/m). 

 

Note that for water: 

µ= 1.01×10
−3

 Pa.s   ρwg = 9.81×10
3
 Pa/m 

So, if, for instance, a fluid with the relative density γ is considered (fluid density γ times 

greater than water) and if the pressure is expressed in MPa, distances in m and the fluid 

velocity in m/s, then we have ρf g = γ (9.81×10−3
)MPa/m. Then the Disroc permeability 

parameter k  (m
2
/MPa.s) have the following value function of kDarcy (m/s): 

 

3

1

9.81 10

Darcy
k

k −=
γ ×

 

 

 

Nb = 1  

Param1 = k  (permeability) 

 
 

 
 

 

 

 

32100  Darcy’s law with isotropic permeability 

 

Nb: 1 

Param1 = k  (permeability) 
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32110   : Transient Darcy flow with isotropic 

permeability 
 

Constitutive law:    v = -k ∇p  ,    ( )M

p
C div k p

t

∂ = ∇
∂

 

v : fluid velocity in the porous material ,  ∇p : fluid pressure gradient vector 

 

For the definition of the unit of k see the material 32100. 

CM has the dimension and the unit of the pressure p.   

 

Nb = 2  

Param1 = k  (permeability) 

Param2 = CM   (storage coefficient) 

 

 

 
 

32111   : Transient Darcy flow with evolving 

permeability (GeliSol) 
 

Constitutive law:  ( ) ( )
Darcy

r w

w

k
v k S p zλ= − ∇ + γ

γ
  ,    

M

p
C div v

t

∂ =
∂

 

    ( )2
1/( ) 1 (1 )m m

r
k S S Sλ λ λ= − −  

v : fluid velocity in the porous material , 

p : fluid pressure, ∇(.) : gradient vector 

γw : fluid (water) unit weight (= ρwg), 

CM : Storage coefficient ( = 1/M   with M the Biot Modulus for poroelastic material)  

kDarcy : Darcy’s permeability 

kr : relative permeability 

 m : positive constant parameter 

 Sλ : Degree of saturation 

 

Note 210519 

Sλ is calculated from the relation Sλ= 1- V
in

h  where V
in

h is an internal variable which can be 

given by the user in the User module in the array Vinh(n,1). For the material GeliSol, it is 

automatically calculated from the freezing curve of the material which provides the degree of 

saturation in liquid water, Sλ function of the temperature. 

 

Nb = 4  

Param1 = kDarcy  (permeability) 

32110  Transient Darcy flow with isotropic  

  permeability 

 

Nb: 2 

Param1 = k  (permeability) 

Param2 = CM   (storage coefficient) 
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Param2 = CM   (storage coefficient) 

Param3 = γw   (water unit weight) 

Param4 = m 

 

Internal variable: 

V
in

h(n,1): internal variable  1-Sλ 

 

 

 
 

 

 

 

32200   : Darcy flow with anisotropic permeability 
 

Constitutive law:   v = -k ∇p ,      

v : fluid velocity in the porous material ,  ∇p : fluid pressure gradient vector 

 

For the definition of the unit of k see the material 32100. 

 

Nb = 3 

Param1 = kxx 

Param2 = kyy 

Param3 = kxy = kyx 

 

 
 

 

 

 

32210   : Transient Darcy flow with anisotropic 

permeability 
 

32200  Darcy’s law with anisotropic permeability 

 

Nb: 3 

Param1 = kxx 

Param2 = kyy 

Param3 = kxy = kyx 

32111  Transient Darcy flow with evolving  

  Permeability (Gelisol) 

 

Nb: 4 

Param1 = kDarcy  (permeability) 

Param2 = CM   (storage coefficient) 

Param3 = γw   (water unit weight) 

Param4 = m 
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Constitutive law:    v = -k ∇p ,      ( )M

p
C div p

t

∂ = ∇
∂

k  

v : fluid velocity in the porous material ,  ∇p : fluid pressure gradient vector 

 

For the definition of the unit of k see the material 32100. 

CM has the dimension and the unit of the pressure p.   

 

Nb = 4 

Param1 = kxx 

Param2 = kyy 

Param3 = kxy = kyx 

Param4 = CM   (storage coefficient) 

 

 

 
 

 

 

 

II.4) Hydraulic 40000 Cables  

→ See 12200, 12210 Tubes 
 

II.5) Hydraulic 50000 Beams  

→ See 12100, 12110 Boreholes  
 

II.4) Hydraulic 60000 Bolts  

→ See 12200, 12210 Tubes  
 

 

  

32210  Transient Darcy’s law with 

 anisotropic permeability 

 

Nb: 4 

Param1 = kxx 

Param2 = kyy 

Param3 = kxy = kyx 

Param4 = CM   (storage coefficient) 
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III) Thermal 
 

III.1) Thermal  - WIRES & TUBES  
(associated thermal model for bars, beams, anchors and bolts) 

III.2) Thermal  - ROCKJOINTS & FRACTURES   

III.3) Thermal  - BULK MATERIALS    
 
 

33111   : Transient Heat flow with thawing (GeliSol) 
 

Constitutive law of the material includes the equations of heat transport by thermal diffusion 

(Fourier’s law) and by advection. In the interval of temperatures corresponding to the thawing 

process, the liquid water content decreases because the water is transformed into ice (see the 

figure). In these temperatures interval, the thermal capacity includes the latent heat of the 

water to ice phase change L. 

  

. , ,p

D A D AJ T J C T v J J Jλ λ= −Λ ∇ = ρ = +    (3.1) 

( ) ( )( . )
p pT

C L G div T div C T v
t

λ λ λ
∂ρ + ρ φ = Λ ∇ − ρ
∂

  (3.2) 

( )
( )

S T
G T

T

λ∂=
∂

       (3.3) 

T : temperature,  

∇T : temperature gradient, 

J D: diffusive heat flow, 

J A: advective heat flow, 

Λ : thermal conductivity, 

ρ : mass density (of the porous material, soil or rock), 

C
 p

 : specific heat capacity of the porous material (soil, rock) at constant pressure, 

ρλ : pore fluid (water) mass density, 

C
 p

λ : pore fluid (water) specific heat capacity,  

φ : porosity, 

L : latent heat of the ice–water phase change (heat needed for unit mass change), 

 Sλ(T) : liquid saturation degree at temperature T 

 

New variables are defined for simplicity: 

Lv  : volumetric latent heat of the water-ice phase change.  Lv = ρλ L where ρλ is the 

water density and L the (specific) latent heat of the ice–water phase change 
Cvλ  : volumetric heat capacity of the liquid (water) Cvλ = ρλC

 p
λ where ρλ is the 

density and C
 p

λ the specific heat capacity at constant pressure of the liquid. 

Cvu  : volumetric heat capacity of the unfrozen soil: Cvu = ρC
 p
 where ρ is the density 

and C
 p
 the specific heat capacity at constant pressure of the soil at unfrozen state, 
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Cvf  : volumetric heat capacity of the frozen soil: Cv = ρC
 p

 where ρ is the density and 

C
 p

 the specific heat capacity at constant pressure of the soil at frozen state, 

  Cvs  : volumetric heat capacity of the partially frozen soil: 

Cvs = Sλ Cvu + (1-Sλ) Cvf  

 

The heat conductivity varies also with the water content between the values corresponding to 

the unfrozen and frozen states: 

Λ = Sλ Λu + (1-Sλ) Λ f 

  

Λu  : heat conductivity of the soil at unfrozen state, 

Λf  : heat conductivity of the soil at frozen state. 

 

With these notations the equation (3.2) reads: 

( ) ( )( . )
vs v v

T
C L G div T div C T v

t
λ

∂+ φ = Λ ∇ −
∂

   (3.4) 

 

The evolution of Sλ with temperature is deduced from the freezing curve of the soil, the 

material data giving the evolution of the liquid water content in the soil at different 

temperatures: 

 

 
Variation of the water content with the temperature for different soils (Li et al., 2018) 
Li, H., Yang, Z. J., and Wang, J. (2018). Unfrozen water content of permafrost during thawing by the capacitance technique. Cold Regions 

Science and Technology, 152 :15-22. 

 

Different options exist to define and introduce the function Sλ(T) in the model: 

  

- If the parameter Option = 0 there is no thawing modeled. 

- If the parameter Option = 1 then a simple model of thawing is considered: 

Sλ(T) varies linearly between T=Tmin<0 and T=0 from Sλ(Tmin)= Smin to Sλ(0)=1. In this 

case Tmin and Smin  are given as parameter of the material (Param7, Param8). 

- If the parameter Option = 2, the thawing curve is defined in a file. The file is text file 

called name.dat where name  is the name of the material. This file has the following 

format: 

__________________ 

#Comments: the thawing curve for the material “Clay” 

#The curve includes N points 

Curve 

N 

T1   S1 

Wc : unfrozen water content of the partially frozen soil 
M ax

cW : water content of the unfrozen soil 

 

( )
( ) c

Max
c

W T
S T

W
λ =  

( )
( )

S T
G T

T

λ∂=
∂
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T2   S2 

 … 
TN   SN 

__________________ 

The lines before the line starting by keyword ‘Curve’ are free comments.  The line containing 

just the keyword ‘Curve’ is mandatory. Then follows N, the number of points, and then N 

lines containing the pair  ‘Ti  Si’ where Ti  are increasing temperatures and Si  the liquid water 

contents with values between 0 and 1. Then the function  Sλ(T) is built in the following way: 

 

           Sλ(T)=S1 if T ≤ T1, 

Sλvaries linearly from Si to Si+1 for Ti ≤ T ≤ Ti+1, 

Sλ(T)= SN if TN  ≤ T  

 

Un example of thawing curve file is given in the folder Tools, called thawing.dat. 

 Sλ  

Τmin Τ 

Smin 

 0 

S =1 1  

  

 Sλ  

Τ1 Τ 

S1 

Τ2 Τi ΤN 

SN 

 
Option 1: Curve defined by (Tmin, Smin)          Option 2: Curve defined by (Ti, Si) in a file  

Figure : Two options of definition of the thawing curve 

 

Note 210521: 

The thawing curve Sλ(T) is a characteristic of the soil and an input of the model. From this 

data, at each temperature, the Sλ is determined. This value is used by the hydraulic and 

mechanical material models 32111 and 31121 (Gelisol) in order to express the effects of 

thawing process on the hydraulic (permeability) and mechanical properties. 

 

 

Nb = 10  

Param1 =  Λu : thermal conductivity of the unfrozen soil, 

Param2 =  Λf : thermal conductivity of the frozen soil, 

Param3 = Cvu : volumetric heat capacity of the unfrozen soil, 

Param4 = Cvf : volumetric heat capacity of the frozen soil, 

Param5 = Cvλ: volumetric pore fluid (water) heat capacity, 

Param6 = Lv : volumetric latent heat of the water-ice phase change, 

Param7 = φ : porosity, 

Param8 = Thawing Option for the definition of the thawing curve Sλ(T), 

Param9= Tmin 

Param10= Smin 

 

Internal variable: 

V
in

T(n,1): internal variable  1-Sλ(T) 
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33111  Transient heat flow with thawing (Gelisol) 

 

Nb = 10  

Param1 =  Λu : unfrozen soil thermal conductivity, 

Param2 =  Λf : frozen soil thermal conductivity, 

Param3 = Cvu : unfrozen soil volumetric heat capacity, 

Param4 = Cvf : frozen soil volumetric heat capacity, 

Param5 = Cvλ: pore fluid (water) volumetric heat capacity, 

Param6 =Lv :water-ice phase change volumetric latent heat, 

Param7 = φ : porosity, 

Param8 = Thawing Option (0,1,2) 

Param9= Tmin 

Param10= Smin 
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IV) Custom Special Models 
 

 

HiDCon : High Deformable Concrete  
 

The elastic-plastic behavior of Highly Deformable Concrete Elements (HiDCon) can be 

modeled by a plane Mohr-Coulomb criterion with hardening. With σzz supposed to be the 

intermediate principal stress and with negative compression sign convention the Mohr-

Coulomb criterion reads: 

 

( ) ( )1 2 1 2( , ) sin 2 ( ) cos 0F Cξ = σ − σ + σ + σ φ − ξ φ ≤σ  

 

Where ξ is the hardening parameter  and (σ1, σ2)  the major and minor in-plane principal 

stresses. The compressive strength Rc  (the UCS ) is related to the cohesion by:  

2 ( )cos
( )

1 sin
c

C
R

ξ φξ =
− φ

 

And it varies with the plastic strain according to the hardening rule. This rule is chosen in a 

way to have the typical behavior of HiDCon elements illustrated in the following figure. 

 

 

 

E
 

εM
 ε 

σ 

σ0
 

 

Under a uniaxial stress, the deformation is elastic and linear up to the stress σ0 for the axial 

strain ε0= σ0/E and then a perfect plastic strain takes place up to a total axial strain εM. After 

this stage, the stress increases with a paste which is a quadratic function of the plastic strain. 

 
Constitutive model: 

e p= +ε ε εɺ ɺ ɺ  
Elasticity:   

1
( )e

t r
E E

+ ν ν=ε σ - σ δɺ ɺ ɺ ,      

Plasticity:               p G∂= λ
∂

ε
σ

ɺɺ   ,    
0 0

0 0 , 0 , 0

if F then

if F then F F

< λ =

= λ ≥ ≤ λ =

ɺ

ɺ ɺɺ ɺ
 

Plastic potential: 

( ) ( )1 2 1 2( ) sinG = σ − σ + σ + σ ψσ  

Hardening rule: 

  

2

0 0( )
p

cR Eξ = σ + β ξ − ε
 

:p pξ = α ε εɺ ɺ ɺ

 
 

where the hardening variable ξ starts from 0 at the initial state of the material, the symbol .  

stands for the positive part: 
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< x > = 0     if     x < 0 

< x > = x     if     x ≥ 0 

and  0

0

p

M
E

σε = ε −   and  β  a material parameter. α is an internal constant parameter ensuring 

that for a unixial compression test ξ represents the axial plastic strain. 

 

Nb = 7 

Param1 = E 

Param2 = ν 

Param3 = σ0  (initial UCS) 

Param4 = φ (°) 
Param5 = ψ (°) 
Param6 = εM 

Param7 = β 

 

Internal variable   

Vin(n,1) : ξ 

Necessary Condition on parameters:   εM > σ0/E 

 

 


