

Fracture Simulation in Materials

23/10/2021 Version: 5-12-1



Finite Element Code Enriched with Joint Element for Thermo-Hydro-Mechanical processes in Fractures Porous Media

> FRACSIMA www.fracsima.com

| General N               | otation                                                                                                                                                         | 3  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| I) Mechanics            |                                                                                                                                                                 | 4  |
| I.1) Mecho              | anics - BARS                                                                                                                                                    | 4  |
| 11100                   | : Linear elastic bar element                                                                                                                                    | 4  |
| 11110                   | : Linear elastic-plastic bar element                                                                                                                            | 5  |
| I.2) Mecho              | anics - ROCKJOINTS & FRACTURES                                                                                                                                  | 6  |
| 21100                   | : Linear elastic joint                                                                                                                                          | 6  |
| 21120                   | : Linear elastic with Mohr-Coulomb plasticity                                                                                                                   | 7  |
| 21200                   | : Non-linear hyperbolic elasticity                                                                                                                              | 8  |
| 21220                   | : Non-linear elasticity with Mohr-Coulomb plasticity                                                                                                            | 9  |
| 21230                   | : Non-linear elasticity with Lemaitre creep law                                                                                                                 | 0  |
| 21240                   | : Non-linear elastoplastic with Pouya strength criterion and with softening                                                                                     | 2  |
| 21510                   | : CZFrac: Cohesive Zone Fracture with Damage-Plasticity and Unilateral Contact                                                                                  | 4  |
| I.3) Mecho              | anics - BULK MATERIALS                                                                                                                                          | 19 |
| 31100                   | : Linear elastic and isotropic material                                                                                                                         | 9  |
| 31110                   | : Elastic-plastic isotropy with Drucker-Pragar criterion                                                                                                        | 9  |
| <b>31120</b><br>Truncat | : Elastic-plastic isotropic material with Mohr-Coulomb criterion, Non-Associate and Tractic ted                                                                 |    |
| 31121                   | : Elastic-plastic Mohr-Coulomb with evolving properties (Gelisol)                                                                                               | 24 |
| 31125                   | : Elastic-plastic Mohr-Coulomb with Compressibility Cap (MC-CAP)                                                                                                | 26 |
| 31130                   | : Viscoelastic isotropic material : Linear elasticity and Norton-Hoff creep law                                                                                 | 30 |
|                         | : Viscoplastic isotropic material : Linear Elasticity & Associate Plasticity with Mises criterion ar<br>atic + isotropic hardening & Lemaitre viscoelasticity   |    |
| 31200                   | : Linear Elasticity with General Anisotropy                                                                                                                     | 33 |
| 31300                   | : Linear elasticity with Saint Venant anisotropy                                                                                                                | }4 |
| 31400                   | : Linear elasticity with transverse isotropy                                                                                                                    | 36 |
| 31410                   | : Linear elasticity with transverse isotropy + Drucker-Prager plastic criterion                                                                                 | 38 |
| <b>31430</b><br>Mohr-0  | : ANELVIP: Anisotropic elasto-viscoplastic material : Transverse Isotropic elasticity, anisotrop<br>Coulomb or Drucker-Prager plasticity and Lemaitre creep law |    |
| 31600                   | : Elastic-Damage material with modified Drucker-Prager softening criterion                                                                                      | ;3 |

| I.4) Mecho            | anics - ANCHORS                                                            |                  |
|-----------------------|----------------------------------------------------------------------------|------------------|
| 41100                 | : Elastic Rock Anchor                                                      |                  |
| 41110                 | : Elastic-Plastic Rock Anchor                                              | 55               |
| 41310                 | : Elastic-Damage Rock Anchor                                               |                  |
| 51100                 | : Elastic Beam                                                             |                  |
| 61100                 | : Elastic Bolt (beam + contact interface)                                  |                  |
| 61110                 | : Elastic Bolt with elastoplastic contact                                  | 59               |
| II) Hydraulic.        |                                                                            | 61               |
| II.1) Hydro           | aulic - BOREHOLES & TUBES                                                  |                  |
| 12100                 | : Borehole : Steady state flow                                             | 61               |
| 12110                 | : Borehole : Transient flow                                                | 61               |
| 12200                 | : Tube : Steady state flow                                                 |                  |
| 12210                 | : Tube : Transient flow                                                    |                  |
| II.2) Hydro           | aulic - ROCKJOINTS & FRACTURES                                             |                  |
| 22100                 | : Hydraulic rock joint, <i>infinite</i> transverse conductivity            | 64               |
| 22110                 | : Transient hydraulic flow in rock joint, infinite transverse conductivity | 64               |
| 22200                 | : Hydraulic flow in rock joint, <i>finite</i> transverse conductivity      | 65               |
| 22210                 | : Transient hydraulic flow in rock joint, finite transverse conductivity   | 65               |
| II.3) Hydro           | aulic - BULK MATERIALS                                                     | 68               |
| 32100                 | : Darcy flow with isotropic permeability                                   | 68               |
| 32110                 | : Transient Darcy flow with isotropic permeability                         | 69               |
| 32111                 | : Transient Darcy flow with evolving permeability (GeliSol)                | 69               |
| 32200                 | : Darcy flow with anisotropic permeability                                 |                  |
| 32210                 | : Transient Darcy flow with anisotropic permeability                       |                  |
| II.4) Hydro           | aulic 40000 Cables                                                         |                  |
| $\rightarrow$ See 122 | 200, 12210 Tubes                                                           |                  |
| II.5) Hydro           | aulic 50000 Beams                                                          |                  |
| $\rightarrow$ See 122 | 100, 12110 Boreholes                                                       |                  |
| II.4) Hydro           | aulic 60000 Bolts                                                          |                  |
| $\rightarrow$ See 122 | 200, 12210 Tubes                                                           |                  |
| III) Thermal.         |                                                                            | 72               |
| Fracsima -            | 2016                                                                       | www.fracsima.com |

|    | III.1) Thermal - WIRES & TUBES                            | 72   |
|----|-----------------------------------------------------------|------|
|    | III.2) Thermal - ROCKJOINTS & FRACTURES                   | 72   |
|    | III.3) Thermal - BULK MATERIALS                           | 72   |
|    | <b>33111</b> : Transient Heat flow with thawing (GeliSol) | 72   |
| IV | ') Custom Special Models                                  | . 76 |
|    | HiDCon : High Deformable Concrete                         | . 76 |

# General Notation

For each material type, the code is composed of 5 digits:

The first digit is 1, 2,3, 4 for designating the elements nature:

1 for bar elements,

2 for joint elements (interfaces, cracks and fractures),

3 for surface elements (bulk materials),

4 for anchor elements.

5 for beam elements

6 for bolt elements.

This second digit is 1 or 2 to designate the phenomena which is concerned:

for Mechanics,
 for Hydraulics,
 for Thermal.

The other 3 digits define the constitutive model.

For each material constitutive model, first the number of parameters, Nb, and then the values of the Nb parameters are specified.

# I) Mechanics

# I.1) Mechanics - BARS

### 11100 : Linear elastic bar element

Constitutive Relation :  $F = E_s \varepsilon$  F : axial force  $\varepsilon$  : axial deformation

**Note:** In 2D plane modeling, a unit the thickness of the model is considered in relation with a 3D modeling. The section *S* considered for the bar is so related to a unit thickness of the model. If, in the direction perpendicular to the plane of modeling, the bars are distant, for instance, of 40 *cm* and if the adopted unit length is meter, then there are 2.5 bars per unit thickness of the model. Then, the physical section of the bars has to be multiplied by this factor 2.5 to define *S* in the above relation, and then multiplied by the Young's modulus to define the above parameter  $E_s$ .

Example: The length unity is meter and the stress unity, *MPa*, and so the force unity, *MN* (Mega Newoton). Bars diameter is 2 *cm* and bars distance in the direction perpendicular to the plane of modeling equal to 40*cm*, and the steel Young's modulus 210.10<sup>3</sup> *MPa*. Then  $E_s = \pi \times (0.01)^2 \times 2.5 \times 210.10^3 = 1650$  *MN*. The axial force calculated by the code is expressed in *MN* unity.

Nb = 1

Param1 =  $E_s$  (The product *E*×*S* of the Young modulus and the section of the bar. Dimension : force)

| 11100                   | ELinear Elastic bar element |
|-------------------------|-----------------------------|
| Nb: 1<br>Param1 = $E_s$ |                             |

4

## 11110 : Linear elastic-plastic bar element

Constitutive Relation :  $F = E_s (\varepsilon - \varepsilon^p)$  $d\varepsilon^p = 0$  if  $\sigma < \sigma_y$  or if  $\sigma = \sigma_y$  and  $d\sigma < 0$ F: axial force  $\varepsilon$ : axial deformation  $\varepsilon^p$ : axial plastic deformation

**Note**: The section *S* for  $E_s$  and  $Y_s$  takes into account in the same way the bars distance in the direction perpendicular to the plane of the model: see the note for the material 11100. In every configuration, we must have  $Y_s/E_s = \sigma_y/E$ .

Nb = 2

Param1 =  $E_s$  (Product  $E \times S$  of the Young modulus and the section of the bar. Dimension : force)

Param2 =  $Y_s$  (Product  $\sigma_y S$ , limit elastic force)

| 11110                                     | Elastoplastic bar element |
|-------------------------------------------|---------------------------|
| Nb: 2<br>Param1 = $E_s$<br>Param2 = $Y_2$ |                           |

## I.2) Mechanics - ROCKJOINTS & FRACTURES

### 21100 : Linear elastic joint

Constitutive Relation:  $\underline{\sigma} = K \underline{u}$ ,

$$\begin{pmatrix} \mathbf{\tau} \\ \mathbf{\sigma}_n \end{pmatrix} = \begin{bmatrix} K_t & K_{tn} \\ K_{nt} & K_n \end{bmatrix} \begin{pmatrix} u_t \\ u_n \end{pmatrix}$$

Nb = 3

Param1 =  $K_t$  (tangent stiffness) Param2 =  $K_n$  (normal stiffness) Param3 =  $K_{nt} = K_{tn}$  (non diagonal stiffness term, defining dilatancy)

**Note**: The stiffness parameters  $K_t$ ,  $K_n$ ,  $K_{tn}$  have the dimension of stress/length. Their values are highly depending on the physical properties of the fractures walls (roughness..) and/or of filling materials (for rockjoints). If a rockjoint is assimilated to a thin layer of thickness *e* of an elastic material with Young's modulus *E* and shear modulus  $\mu$ , then  $K_t = \mu/e$ ,  $K_n = E/e$  and  $K_{tn}=0$ .

| 21100           | Linear Elastic joint                                                                                    |
|-----------------|---------------------------------------------------------------------------------------------------------|
| Param $2 = K_n$ | (tangent stiffness)<br>(normal stiffness)<br>$K = K_m$ (non diagonal stiffness $\rightarrow$ dilatancy) |

# 21120 : Linear elastic with Mohr-Coulomb plasticity

$$\underline{\sigma} = \boldsymbol{K} \left( \underline{u} - \underline{u}^p \right)$$

Elasticity: The model 21100 Plasticity : Mohr-Coulomb criterion:

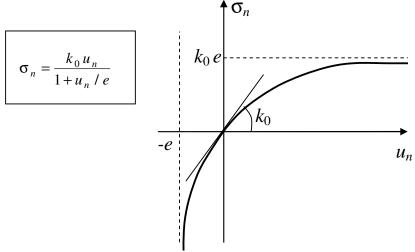
$$f(\underline{\sigma}) = |\tau| + \sigma_n \tan \phi - c \le 0$$

Nb = 5 Param1 =  $K_t$ Param2 =  $K_n$ Param3 =  $K_{nt} = K_{tn}$ Param4 = c (cohesion) Param5 =  $\phi$  (in degrees, the friction angle)

| 21120              | Linear Elastic joint with Mohr-Coulomb |
|--------------------|----------------------------------------|
|                    | Plasticity                             |
| Nb: 5              |                                        |
| Param1 = $K_t$     |                                        |
| Param $2 = K_n$    |                                        |
| Param $3 = K_{nt}$ | $t = K_{tn}$                           |
| Param $4 = c$ (    | (cohesion)                             |
| Param $5 = \phi$   | (in degrees, the friction angle)       |
|                    |                                        |

## 21200 : Non-linear hyperbolic elasticity

The closure displacement is limited by the initial thickness e of the interface. The stress tends to infinity when closure displacement  $u_n$  tends to -e and to  $k_0e$  for great positive openings:



The tangent behavior is linear:

$$\begin{cases} \sigma_t = k_t u_t + k_{nt} u_n \\ \sigma_n = k_{nt} u_t + \frac{k_0 u_n}{1 + u_n / e} \end{cases}$$

The normal stiffness  $k_n$  is  $u_n$ -dependent and given by:

$$k_n = \frac{k_0}{1 + u_n / e}$$

Nb = 4 Param1 =  $K_t$  (tangent stiffness) Param2 =  $k_0$  (normal stiffness) Param3 =  $K_{nt} = K_{tn}$  (non diagonal stiffness term causing dilatancy) Param4 = e (maximum closure or physical thickness of the interface)

| 21200           | Non-linear hyperbolic elastic joint                             |
|-----------------|-----------------------------------------------------------------|
| Nb: 4           |                                                                 |
| Param1 = $K_t$  | (tangent stiffness)                                             |
| Param $2 = k_0$ | (normal stiffness)                                              |
| Param $3 = K_n$ | $t_t = K_{tn}$ (non diagonal stiffness $\rightarrow$ dilatancy) |
| Param $4 = e$   | (maximum closure or physical thickness                          |

# <u>21220</u> : Non-linear elasticity with Mohr-Coulomb plasticity

$$\underline{\sigma} = \boldsymbol{K} \left( \underline{u} - \underline{u}^p \right)$$

Elasticity: The model 21200 Plasticity : Mohr-Coulomb criterion:

Nb = 6 Param1 =  $K_t$ Param2 =  $k_0$ Param3 =  $K_{nt} = K_{tn}$ Param4 = eParam5 = cParam6 =  $\phi$  (degrees)

| 21220            | Non-Linear Elastic joint with |   |
|------------------|-------------------------------|---|
| -                | Mohr-Coulomb Plasticity       |   |
| Nb: 6            |                               |   |
| Param $1 = K$    | t                             |   |
| Param $2 = k_0$  | )                             |   |
| Param $3 = K$    | $K_{nt} = K_{tn}$             |   |
| Param $4 = e$    |                               |   |
| Param $5 = c$    |                               |   |
| Param $6 = \phi$ | (degrees)                     |   |
| 1                |                               | I |

# **<u>21230</u>** : Non-linear elasticity with Lemaitre creep law</u> $\underline{\dot{u}} = \underline{\dot{u}}^e + \underline{\dot{u}}^v$ $\underline{\sigma} = K (\underline{u} - \underline{u}^v), \qquad \begin{pmatrix} \tau \\ \sigma_n \end{pmatrix} = \begin{bmatrix} K_t & K_{tn} \\ K_{nt} & K_n \end{bmatrix} \begin{pmatrix} u_t - u_t^v \\ u_n - u_n^v \end{pmatrix}$ $K_n = \frac{k_0}{1 + u_n / e}$

Elasticity: the same that 21200

Viscous strain: Lemaitre creep law for uniaxial creep under constant stress  $\sigma$  with a stress threshold  $\sigma_c$ :

where:

$$\langle x \rangle = 0$$
 if  $x < 0$   
 $\langle x \rangle = x$  if  $x \ge 0$ 

 $\varepsilon^{\nu}(t) = a < \sigma - \sigma_c > {}^q t^{\alpha}$ 

The incremental creep law uses the internal variable  $\xi = \epsilon^{1/\alpha}$  and reads:

$$\xi = \varepsilon^{1/\alpha} , \qquad \dot{\xi} = \left( a < \sigma - \sigma_c >^q \right)^{1/\alpha}, \qquad \dot{\varepsilon} = \alpha \, \xi^{\alpha - 1} \dot{\xi}$$

To avoid numerical problems near  $\xi=0$ , the law is completed by:  $\dot{\epsilon} = \alpha \xi_0^{\alpha-1} \dot{\xi}$  if  $\epsilon \le \epsilon_0$ . This law is adapted to the joint shear and normal creeps.

For the normal creep:

$$\dot{\xi}_n = s_n \left( b_n h < \left| \boldsymbol{\sigma}_n \right| - \boldsymbol{\sigma}_c >^q \right)^{1/\alpha}; \qquad \dot{u}_n^v = \alpha \, \xi_n^{\alpha - 1} \dot{\xi}_n$$

where  $s_n = \pm 1$  is the sign of  $\sigma_n$  and  $b_n$  a constant parameter. The normal creep must be limited in order to avoid the closure exceeding *e*, or  $u_n$  falling below -e. The elastic law takes already into account this constraint. The parameter *h*,  $0 \le h \le 1$ , is introduced in order to satisfy this condition.

For shear creep, it is supposed that, the normal compressive stress decreases the slip rate, similar to frictional effects, and so the criterions depends on the normal stress also with a 'friction angle' parameter  $\phi$ . It is also supposed that a traction normal stress has no effect on the viscous slip. This leads to the following expressions:

$$\dot{\xi}_{t} = s_{t} \left( b_{t} \left\langle \left| \tau \right| - \left\langle -\sigma_{n} \right\rangle \tan \phi - \tau_{c} \right\rangle^{q} \right)^{1/\alpha} ; \qquad \dot{u}_{t}^{\nu} = \alpha \, \xi_{t}^{\alpha - 1} \dot{\xi}_{t}$$

where  $s_t = \pm 1$  is the sign of  $\tau$  and  $b_t$  a constant parameter

Nb = 12 Param1 =  $K_t$  (tangent stiffness) Param2 =  $k_0$  (normal stiffness) Param3 =  $K_{nt} = K_{tn}$  (non diagonal stiffness term causing dilatancy) Param4 = e (maximum closure or physical thickness of the interface) Param5 = qParam6 =  $\alpha$ Param7 =  $b_t$ Param8 =  $b_n$ 

Fracsima - 2016

Param9 =  $\tau_c$ Param10 =  $\sigma_c$ Param11 =  $\phi$  (°) Param12 =  $\varepsilon_0$ 

Internal Variables: Vin(n,1): internal for non linear elasticity Vin(n,2) : not existing for this material Vin(n,3) = $\xi_t$ , Vin(n,4) = $\xi_n$ 

| 21230              | Non-Linear Elastic<br>creep law | joint with Lemaitre        |
|--------------------|---------------------------------|----------------------------|
| Nb: 12             |                                 |                            |
| Param1 = $K_t$     |                                 | $Param 11 = \phi$ (°)      |
| Param $2 = k_0$    |                                 | $Param 12 = \varepsilon_0$ |
| Param $3 = K_n$    | $t = K_{tn}$                    |                            |
| Param $4 = e$      | (maximum closure)               |                            |
| Param $5 = q$      |                                 |                            |
| Param $6 = \alpha$ |                                 |                            |
| Param7 = $b_t$     |                                 |                            |
| Param $8 = b_n$    |                                 |                            |
| Param9 = $\tau_c$  |                                 |                            |
| $Param10 = \sigma$ | c                               |                            |

## 21240 : Non-linear elastoplastic with Pouya strength criterion and with softening

Strain : 
$$\underline{\dot{u}} = \underline{\dot{u}}^e + \underline{\dot{u}}^p$$
  
Elasticity: the same that 21200  
 $\underline{\sigma} = K(\underline{u} - \underline{u}^p),$   
 $\begin{pmatrix} \tau \\ \sigma_n \end{pmatrix} = \begin{bmatrix} K_t & K_{tn} \\ K_{nt} & K_n \end{bmatrix} \begin{pmatrix} u_t - u_t^p \\ u_n - u_n^p \end{pmatrix}$   
Non linear modulus:  
 $K_n = \frac{k_0}{1 + u_n / e}$ 

Strength criterion (plasticity):

$$F(\underline{\sigma},\xi) = \sqrt{\tau^2 + b^2 g^2} + h \sigma_n \tan\phi_0 - g \tau_c$$
  
$$\tau_c = \frac{C_0^2 + \sigma_R^2 \tan^2 \phi_0}{2\sigma_R \tan\phi_0} , \qquad b = \tau_c - \sigma_R \tan\phi_0$$

The initial strength function  $F_0$  and the residual  $F_r$  are hyperbolic surfaces represented in the figure. The evolution from to the other results from the variation of the g and h which are evolution functions for the cohesion and friction angle and vary from 1 (initial state) to residual values respectively  $g_r$  and  $h_r$ :

$$g_r = \frac{\tau_r}{C_0} = \frac{\sigma_r}{\sigma_k}$$
$$h_r = \frac{\phi_r}{\phi_0}$$

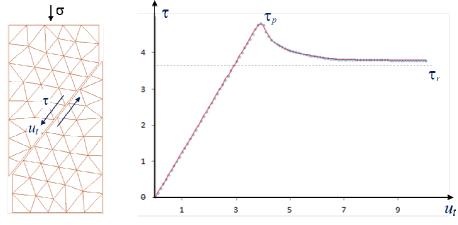
This evolution is controlled by the ductility parameter  $\beta$ . The evolution of *g* can include a hardening (increasing) stage if  $\beta > 1$ .

Non associate Plasticity with dilatancy angle  $\Psi_0$ :  $\underline{\dot{u}}^p = \dot{\lambda} \frac{\partial G}{\partial \underline{\sigma}}$ ,

$$G(\underline{\sigma},\xi) = \sqrt{\tau^2 + b^2 g^2} + h \sigma_n \tan \psi_0$$

Hardening law:  $\dot{\xi} = \alpha \left| \underline{\dot{u}} \right|^p$ 

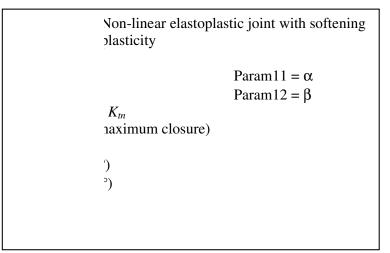
Fracsima - 2016



$$Nb = 12$$

Param1 =  $K_t$  (tangent stiffness) Param2 =  $k_0$  (normal stiffness) Param3 =  $K_{nt} = K_{tn}$  (non diagonal stiffness term causing dilatancy) Param4 = e (maximum closure or physical thickness of the interface) Param5 =  $C_0$ Param6 =  $\phi_0$  (°) Param7 =  $\psi_0$  (°) Param8 =  $\sigma_R$ Param9 =  $g_r$ Param10 =  $h_r$ Param11 =  $\alpha$ Param12 =  $\beta$ 

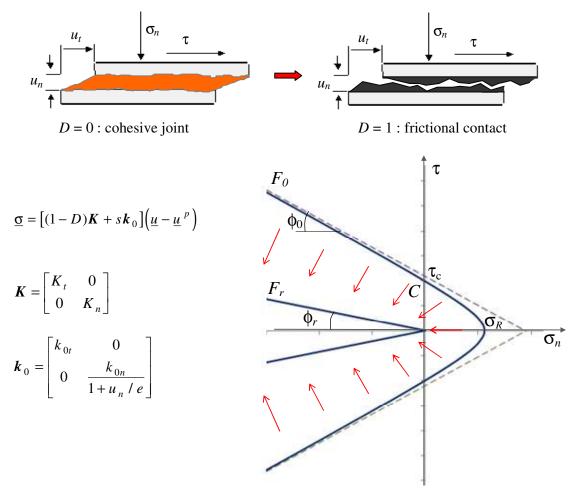
Condition:  $\sigma_R \tan \phi_0 \le C_0$ Internal Variables: Vin(n,1): reserved for damage (not existing for this material) Vin(n,2) : internal for non linear elasticity Vin(n,3) =  $\xi$ 



# <u>21510</u> : CZFrac: Cohesive Zone Fracture with Damage-Plasticity and Unilateral Contact

The Cohesive Zone Fracture (CZFrac) model describes the evolution of an interface from a cohesive interface like a rockjoint or thin layer of cohesive material (left), to a fracture with unilateral fictional contact (right).

The normal and tangent stiffnesses depend on a damage variable  $0 \le D \le 1$  with residual values for D=1. The tangent relative displacement is divided into an elastic and a plastic part. The plastic part represents the irreversible slip on the frictional contact surface after the interface in totally damaged.



s : contact parameter depending on  $-u_n$ ;

s=1 if  $u_n < 0$ , s=0 if  $u_n \ge 0$ 

$$\underline{Damage\ criterion}: \qquad F(\underline{\sigma}, D) = \tau^2 - (h\sigma_n \tan\phi)^2 + 2hg\tau_c\sigma_n \tan\phi - g^2C^2$$
with: 
$$\tau_c = \frac{C^2 + \sigma_R^2 \tan^2\phi}{2\sigma_R \tan\phi} , \qquad h_r = \frac{\tan\phi_r}{\tan\phi}$$

$$g(D) = (1-D)(1-\beta \ln(1-D)) \qquad h(D) = h_r + (1-D)^{\beta'}(1-h_r)$$

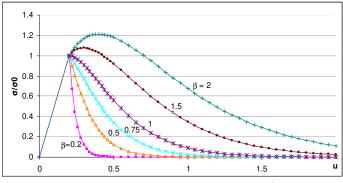
<u>*Plasticity*</u>: There is no plastic deformation as long as D is smaller than 1:  $\underline{\dot{u}}^{p} = 0$  if D < 1

Then the plastic deformation occurs only in the shear direction:  $\underline{u}^p = \begin{pmatrix} u_t^p \\ 0 \end{pmatrix}$ 

The plastic  $F^p$  criterion is the *residual* damage criterion, *i.e.*, the damage criterion for D=0. It is written as:

$$F^{p}(\underline{\sigma}) = |\tau| + h_{r}\sigma_{n} \tan\phi \qquad \text{with:} \quad \begin{pmatrix} \tau \\ \sigma_{n} \end{pmatrix} = s \begin{bmatrix} k_{0t} & 0 \\ 0 & \frac{k_{0n}}{1 + u_{n}/e} \end{bmatrix} \begin{pmatrix} u_{t} - u_{t}^{p} \\ u_{n} \end{pmatrix}$$

The parameter  $\beta > 0$  controls the brittle (small  $\beta$ ) to ductile (increasing  $\beta$ ) damage behavior. For a pure normal stress, the normalized traction-separation curve has the following shape depending on  $\beta$  value:



Traction-Separation curves for different  $\beta$  values

#### **Option Toughness**

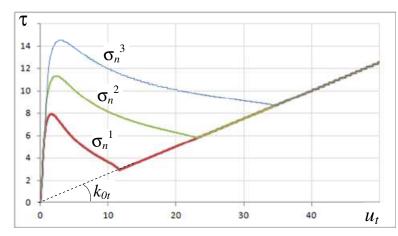
If the Toughness Option is chosen (Param13=1) then the parameters  $\sigma_R$  and *C* are determined from the toughness  $K_c^l$  (Param14) by the following relations depending on the size *L* of the joint element:

$$\sigma_R(L) = K_c^I \sqrt{\frac{2}{\pi L}}, \qquad C(L) = \frac{C}{\sigma_R} \sigma_R(L)$$

Where  $\sigma_R$  and *C* are the parameters 4 and 5 defined for the material (see the list below). This allows modeling well the propagation for large values of *L* without mesh size dependency.

#### **Option Plasticity**

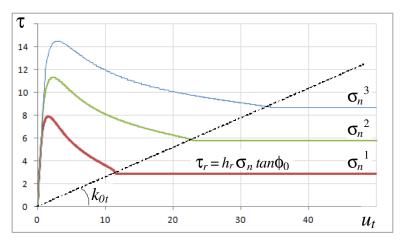
For a shear loading, the shear stress versus slip displacement has de same type of dependency on  $\beta$  value in damage phase. It depends also on the value of the normal stress and if plasticity is taken into account or not. If the plasticity is not modeled (Option 0 for the parameter 12 of the model), then the curve follows the line with the slope  $k_{0t}$  (residual tangent stiffness) for great values of  $u_t$  (following figure):



Shear stress versus slip under different compressive normal stresses for the option without plasticity: the curves join and follow the elastic line with residual stiffness  $k_{0t}$ 

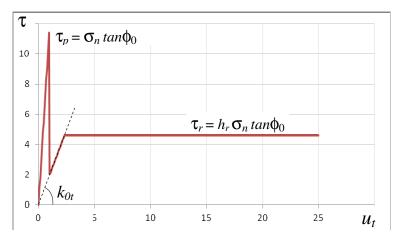
If plasticity is taken into account (Option 1 for the parameter 12 of the model), then the curve ends on a plastic plateau with the residual shear stress  $\tau^r$ . This shear stress is related to the normal stress  $\sigma_n$  with the residual friction angle  $h_r tan \phi_0$  (following figure).

Note that this relation holds only of the contact is maintained: because of the unilateral contact condition, if  $u_n > 0$  then s = 0 and then  $\sigma_n = 0$  and so  $\tau_r = 0$ .



Shear stress versus slip under different compressive normal stresses for the option with plasticity

For brittle damage (small values of  $\beta$ ) and plasticity, it is possible to obtain a sharp decrease of the shear stress after the peak value and then an increase to reach the plastic residual stress (following figure).



Shear stress versus slip for the option with plasticity and brittle damage ( $\beta < 1$ )

Nb = 12  $Param1 = K_t$  $Param2 = K_n$ Param3 = eParam4 =  $\sigma_R$ Param5 = CParam6 =  $\phi$  (°) Param7 =  $h_r$ Param $8 = \beta$ Param9 =  $\beta'$ Param $10 = k_{0t}$  $Param 11 = k_{0n}$ Param12 = *Option* (1 if plasticity taken into account) Internal variable Vin(n,1) : *D* Necessary Condition on parameters:  $C > \sigma_R \tan \phi$ 

| 21510               | Cohesive Fracture with Damage-Plasticity<br>and Unilateral Contact |  |
|---------------------|--------------------------------------------------------------------|--|
| Nb: 14              |                                                                    |  |
| $Param1 = K_t$      | $Param11 = k_{0n}$                                                 |  |
| $Param2 = K_n$      | Param12 = Option Plasticity                                        |  |
| Param3 = e          | Param13 = Option Toughness                                         |  |
| Param4 = $\sigma_R$ | $Param 14 = K_c^I$                                                 |  |
| Param5 = C          |                                                                    |  |
| Param $6 = \phi$ (  | °)                                                                 |  |
| Param7 = $h_r$      |                                                                    |  |
| $Param8 = \beta$    |                                                                    |  |
| Param9 = $\beta'$   |                                                                    |  |
| Param10 = $k_{0}$   | t                                                                  |  |

# I.3) Mechanics - BULK MATERIALS

# 31100 : Linear elastic and isotropic material

Nb = 2

Param1 = E (Young's modulus) Param2 = v (Poissson's ratio)

| 31100 | Linear Elastic and Isotropic Material                             |
|-------|-------------------------------------------------------------------|
|       | <ul><li>C (Young's modulus)</li><li>P (Poisson's ratio)</li></ul> |

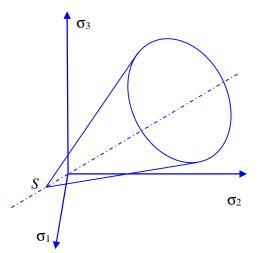
# <u>**31110**</u> : Elastic-plastic isotropy with Drucker-Pragar criterion</u>

 $\dot{\mathbf{\epsilon}} = \dot{\mathbf{\epsilon}}^e + \dot{\mathbf{\epsilon}}^p$ 

Linear elasticity with parameters *E* and v (see the model 31100) Plasticity with Drucker-Prager criterion :  $F(\sigma) = \sqrt{3J_2} + \sin \alpha I_1 - K$ 

$$I_1 = \sigma_{ii}$$
,  $S_{ij} = \sigma_{ij} - \frac{1}{3}\sigma_{kk}\delta_{ij}$ ,  $J_2 = \frac{1}{2}S_{ij}S_{ij}$ 

*K* and sin $\alpha$  are material constants.



Note that the Drucker-Prager criterion is basically written as:

$$F(\mathbf{\sigma}) = \sqrt{J_2} + \gamma I_1 - K$$

The equivalence between the two expressions is ensured by taking:

$$\sin\alpha = \sqrt{3} \gamma , \quad K = \sqrt{3}K'$$

Fracsima - 2016

www.fracsima.com

Nb = 4 Param1 = EParam2 = vParam3 = KParam4 = sin $\alpha$ 

| 31110                                                                 | Linear Isotropic Elasticity with<br>Drucker-Prager Plastic Criterion |
|-----------------------------------------------------------------------|----------------------------------------------------------------------|
| Nb : 4<br>Param1 = $E$<br>Param2 = $v$<br>Param3 = $K$<br>Param4 = si |                                                                      |

# <u>31120</u> : Elastic-plastic isotropic material with Mohr-Coulomb criterion, Non-Associate and Traction <u>Truncated</u>

$$\dot{\mathbf{\epsilon}} = \dot{\mathbf{\epsilon}}^e + \dot{\mathbf{\epsilon}}^p$$

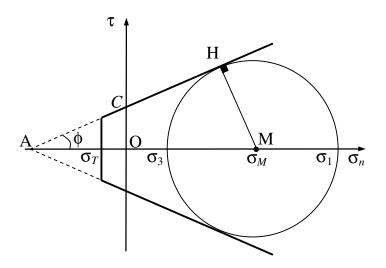
Linear elasticity with parameters E and v (see the model 31100) Plasticity with Mohr-Coulomb criterion:

$$F(\mathbf{\sigma}) = \frac{\sigma_1 - \sigma_3}{2} + \frac{\sigma_1 + \sigma_3}{2} \sin \phi - C \cos \phi \le 0, \text{ where } \sigma_1 \ge \sigma_2 \ge \sigma_3 \text{ principal stresses.}$$

(In Disroc, compressions are negative, and the above model is equivalent to Soil Mechanics convention, where compressions are positive, and then the Mohr-Coulomb criterion reads

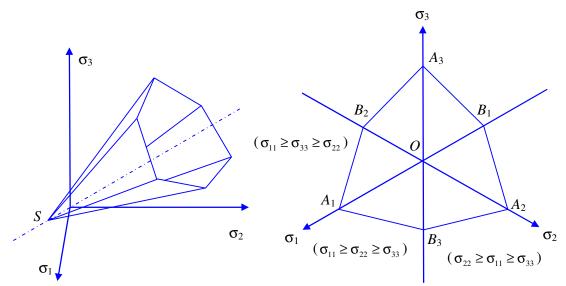
 $F(\mathbf{\sigma}) = \frac{\sigma_1 - \sigma_3}{2} - \frac{\sigma_1 + \sigma_3}{2} \sin \phi - C \cos \phi \le 0, \text{ where } \sigma_1 \ge \sigma_2 \ge \sigma_3 \text{ principal stresses, as in the following figure)}$ 

the following figure).



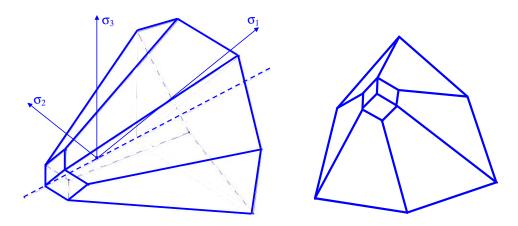
Flow rule:  $\dot{\mathbf{\epsilon}}^{p} = \dot{\lambda} \frac{\partial G}{\partial \mathbf{\sigma}}$  or more precisely  $\dot{\mathbf{\epsilon}}^{p} \in \frac{\partial G}{\partial \mathbf{\sigma}}$  (external normals cone for singular points, with:

**Plastic Potential**:  $G(\mathbf{\sigma}) = \frac{\sigma_1 - \sigma_3}{2} + \frac{\sigma_1 + \sigma_3}{2} \sin \psi$ 



Mohr-Coulomb Criterion in principal stresses space

**Tensile strength truncation**:  $\sigma_1 \leq \sigma_T$  where  $\sigma_T$  designates the tensile strength



Traction Truncated Mohr-Coulomb Criterion

#### Note 210514:

if  $\sigma_T \ge C \frac{\cos \phi}{\sin \phi}$  then it has no effect. If  $\frac{2C \cos \phi}{1+\sin \phi} \le \sigma_T \le C \frac{\cos \phi}{\sin \phi}$  then it has no effect for *uniaxial tractions*: the tensile unixial strength remains equal to  $\frac{2C \cos \phi}{1+\sin \phi}$ . If  $\sigma_T \le \frac{2C \cos \phi}{1+\sin \phi}$  then it will represent the limit aof uniaxial traction allowed by the criterion, or the tensile (uniaxial) strength.

<u> Fracsima - 2016</u>

#### DISROC Materials' Catalogue

Nb = 6 Param1 = E Param2 = v Param3 = C Param4 =  $\phi$  (°) Param5 =  $\psi$  (°) Param6 =  $\sigma_T$ 

| 31120                                                                                                           | Linear Isotropic Elasticity with<br>Mohr-Coulomb Plastic Criterion<br>Non-Associate and Traction Truncated |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Nb : 6<br>Param1 = E<br>Param2 = $v$<br>Param3 = C<br>Param4 = $\phi$<br>Param5 = $\psi$<br>Param6 = $\sigma_2$ | (°)<br>(°)                                                                                                 |

# <u>31121</u> : Elastic-plastic Mohr-Coulomb with evolving properties (Gelisol)

This model is exactly the same that the Elastic-plastic Mohr-Coulomb model (31120) but with two set of parameters. The model 31120 includes 6 parameters  $(E,v,C, \phi, \psi, \sigma_T)$ . The model 31120 includes 6 parameters  $(E_i, v_i, C_i, \phi_i, \psi_i, \sigma_i^T)$  for the initial values of the Young modulus, Poisson ratio, cohesion, friction angle, dilation angle and tensile strength, and 6 parameters  $(E_f, v_f, C_f, \phi_f, \psi_f, \sigma_f^T)$  for the initial values of these quantities. The evolution of the parameters between the initial and final values is given by internal variables  $v^i$  (i=1,6) in the following form :

$$E = (1-v_1) E_i + v_1 E_f$$
  

$$v = (1-v_2) v_i + v_2 v_f$$
  

$$C = (1-v_3) C_i + v_3 C_f$$
  

$$\phi = (1-v_4) \phi_i + v_4 \phi_f$$
  

$$\Psi = (1-v_5) \Psi_i + v_5 \Psi_f$$
  

$$\sigma_T = (1-v_6) \sigma_i^T + v_6 \sigma_f^T$$

The evolution of the internal variable can be handled by the user in the User module. The default value of the internal variables is zero.

For Gelisol model conceived to model soil and rock freezing phenomenon and its effect on the mechanical properties, the evolution of internal variables is handled automatically in Disroc modules according to the constitutive equations of the coupled THM phenomena (See documentation on the Gelisol model).

#### Note 210515:

The Note 210514 for the material 31120 concerning the relation between the tensile strength truncation remains valid for the evolving parameters, *i.e.*, it takes into accound the evolving quantities and not the initial or finale values of the parameters. According to the evolution of the internal variables, the tensile strength  $\sigma_T$  can become greater or smaller than the limit given by the Mohr-Coulomb criterion and make that the truncation become active or not.

#### Note 210516:

The variation of the elastic parameters E and v makes necessary the computation of the whole rigidity matrix at each time increment and this is a very time consuming action. If the difference between the initial and final values of these parameters is small, it is better to take the same values for them in order to reduce computation time. Disroc does not take into account the variation of the material's stiffness if it is less than 0.1 %, or more precisely if:

$$\frac{\left|E_{f}-E_{i}\right|}{\left(E_{f}+E_{i}\right)/2}+\left|\nu_{f}-\nu_{i}\right|<0.001$$

In this case Disroc considers *E* and v constants and equal to  $E_i$  and  $v_i$ , and the compotation becomes faster.

Internal Variables: Vin(n,1):  $v_1$  (can represent also scalar damage) Vin(n,2):  $v_2$ 

Fracsima - 2016

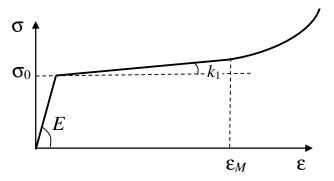
#### DISROC Materials' Catalogue

| Vin( $n$ ,3): $v_3$        |                          |
|----------------------------|--------------------------|
| $Vin(n,4): v_4$            |                          |
| $Vin(n,5): v_5$            |                          |
| $Vin(n,6): v_6$            |                          |
|                            |                          |
| Nb = 12                    |                          |
| $Param1 = E_i$             | Initial Young modulus    |
| $Param2 = v_I$             | Initial Poisson ration   |
| Param $3 = C_i$            | Initial Cohesion         |
| Param4 = $\phi_i$ (°)      | Initial Friction Angle   |
| Param5 = $\psi_i$ (°)      | Initial Dilation Angle   |
| Param6 = $\sigma_i^T$      | Initial Tensile Strength |
| Param7 = $E_f$             | Final Young modulus      |
| Param8 = $v_f$             | Final Poisson ration     |
| Param9 = $C_f$             | Final Cohesion           |
| $Param10 = \phi_f(^\circ)$ | Final Friction angle     |
| Param11= $\psi_f(^\circ)$  | Final Dilation angle     |
| Param12 = $\sigma_f^T$     | Initial Tensile Strength |

| 31121                                                                                                                                                                                                      | Evolving Elastoplastic Mohr-Coulomb<br>Gelisol |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Nb : 12<br>Param1 = $E_i$<br>Param2 = $v_i$<br>Param3 = $C_i$<br>Param4 = $\phi_i$<br>Param5 = $\psi_i$<br>Param6 = $\sigma_f^T$<br>Param7 = $E_f$<br>Param8 = $v_f$<br>Param9 = $C_f$<br>Param10 = $\phi$ | (°)                                            |
| Param11= $\psi_j$<br>Param12 = $\sigma$                                                                                                                                                                    | $f(^{\circ})$                                  |

# <u>31125</u> : Elastic-plastic Mohr-Coulomb with Compressibility Cap (MC-CAP)

The objective of this model is to produce a compressible material with the following shape of the stress-strain curve for uniaxial compression as well as oedometric compression:



The curve presents, after the elastic limit, a long plastic stage with zero to small slope followed by a quickly increasing slope.

The Mohr-Coulomb criterion with traction cutoff is used as well as a compressible material criterion, both with hardening (following figure).

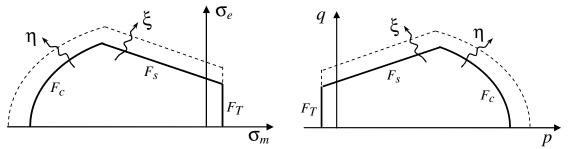


Figure:  $F_s$ : Shear criterion (Mohr-Coulomb),  $F_T$ : Traction cutoff,  $F_c$ : Compressibility  $(q = \sigma_e, p = -\sigma_m)$ 

#### **Constitutive model**:

Elasticity:

$$\begin{split} \hat{\boldsymbol{\varepsilon}} &= \hat{\boldsymbol{\varepsilon}}^{e} + \hat{\boldsymbol{\varepsilon}}^{\nu} \\ \dot{\boldsymbol{\varepsilon}}^{e} &= \frac{1+\nu}{E} \dot{\boldsymbol{\sigma}} - \frac{\nu}{E} t r(\dot{\boldsymbol{\sigma}}) \, \boldsymbol{\delta} , \\ \dot{\boldsymbol{\varepsilon}}^{p} &= \dot{\lambda}_{s} \frac{\partial G_{s}}{\partial \boldsymbol{\sigma}} + \dot{\lambda}_{T} \frac{\partial G_{T}}{\partial \boldsymbol{\sigma}} + \dot{\lambda}_{c} \frac{\partial G_{c}}{\partial \boldsymbol{\sigma}} \\ then \quad \dot{\lambda}_{i} &= 0 \\ then \quad \dot{\lambda}_{v} \geq 0 , \quad \dot{E} \leq 0 , \quad \dot{\lambda}_{v} \dot{E} = 0 \end{split} \quad \text{for } i=s, c \text{ or } T \end{split}$$

Plasticity:

Flow rule: if  $F_i = 0$  then  $\dot{\lambda}_i \ge 0$ ,  $\dot{F}_i \le 0$ ,  $\dot{\lambda}_i \dot{F}_i = 0$ 

#### I) Mohr-Coulomb + Traction Cutoff

if  $F_i < 0$ 

This part of the model corresponds to the model 31120 with hardening for the parameter cohesion. The traction cutoff value remains constant (no hardening).

With negative compression sign convention, the Mohr-Coulomb criterion reads:

$$F_{s}(\boldsymbol{\sigma},\boldsymbol{\xi}) = (\boldsymbol{\sigma}_{1} - \boldsymbol{\sigma}_{2}) + (\boldsymbol{\sigma}_{1} + \boldsymbol{\sigma}_{2}) \sin \phi - 2C(\boldsymbol{\xi}) \cos \phi \leq 0$$

Or:

$$F_{s}(\mathbf{\sigma},\xi) = (\sigma_{1} - \sigma_{2}) + (\sigma_{1} + \sigma_{2}) \sin \phi - R_{c}(\xi) (1 - \sin \phi) \leq 0$$
$$R_{c} = \frac{2C \cos \phi}{1 - \sin \phi}$$

Where C is the cohesion,  $R_c$  the uniaxial compression strength (UCS) and  $\xi$  a hardening parameter.

$$R_{c}(\xi) = R_{c}^{0} + k_{1}\xi + k_{2}\left\langle\xi - \varepsilon_{0}^{p}\right\rangle^{2}$$

where the symbol  $\langle . \rangle$  stands for the positive part:

$$\langle x \rangle = 0$$
 if  $x < 0$   
 $\langle x \rangle = x$  if  $x \ge 0$ 

Plastic potential:

$$G_{s}(\boldsymbol{\sigma},\boldsymbol{\xi}) = (\boldsymbol{\sigma}_{1} - \boldsymbol{\sigma}_{2}) + (\boldsymbol{\sigma}_{1} + \boldsymbol{\sigma}_{2}) \sin \boldsymbol{\psi}$$

The hardening rule is:

$$\dot{\boldsymbol{\xi}} = \alpha \sqrt{\dot{\boldsymbol{\epsilon}}^{p} : \dot{\boldsymbol{\epsilon}}^{p}}$$
,  $\alpha = \frac{1 - \sin \psi}{\sqrt{2(1 + \sin^{2} \psi)}}$ 

The value of  $\alpha$  assures that for a uniaxial compression we have :  $\delta \xi = \left| \delta \varepsilon_{yy}^{p} \right|$ .

#### **II)** Compressible material

This mechanism of plastic deformation is defined by the following equations:

| Plastic criterion | $F_{c}(\boldsymbol{\sigma},\boldsymbol{\eta}) = \sqrt{a_{2}\sigma_{e}^{2} + \varphi\sigma_{m}^{2}} - (1 - a_{1}\varphi)\sigma_{M}(\boldsymbol{\eta})$                                                 |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Plastic potential | $G_c(\mathbf{\sigma},\mathbf{\eta}) = \sqrt{a_3 \sigma_e^2 + \boldsymbol{\varphi} \sigma_m^2}, \qquad \dot{\mathbf{\varepsilon}}_c^p = \dot{\lambda}_c \frac{\partial G_c}{\partial \mathbf{\sigma}}$ |
| Hardening         | $\boldsymbol{\sigma}_{M}(\boldsymbol{\eta}) = \boldsymbol{\sigma}_{M}^{0} + k_{3}\boldsymbol{\eta} + k_{4}\left\langle \boldsymbol{\eta} - \boldsymbol{\varepsilon}_{v}^{p} \right\rangle^{2}$        |
| Hardening law     | $\dot{\boldsymbol{\eta}} = -\dot{\boldsymbol{\epsilon}}^{\rho} : \boldsymbol{\delta}$                                                                                                                 |

Where  $\sigma_e$  is the Mises Equivalent Stress and  $\sigma_m$  the mean stress:

$$\boldsymbol{\sigma}^{e} = \sqrt{\frac{3}{2} S_{ij} S_{ij}} \quad , \qquad \boldsymbol{\sigma}_{m} = \frac{1}{3} \boldsymbol{\sigma} : \boldsymbol{\delta}$$

 $\varphi$  is the porosity and  $a_1, a_2, \sigma_M^0, k_3, k_4$  and  $\varepsilon_0^v$  are constant parameters. The evolution of the porosity versus des total volumetric strain is given by:

$$\dot{\boldsymbol{\varphi}} = (1 - \boldsymbol{\varphi}) \dot{\boldsymbol{\varepsilon}}_{p}^{vol}$$

Which supposes that the solid grains incompressible and that the elastic volumetric strain is negligible. This equation can be integrated in:

$$\boldsymbol{\varphi} = 1 - (1 - \boldsymbol{\varphi}_0) e^{-\varepsilon_p^{vol}}$$

Fracsima - 2016

www.fracsima.com

With  $\varphi_0$  the initial value of the porosity for  $\epsilon=0$ . Of course, the condition  $\varphi \ge 0$  should be verified. To avoid numerical problems with  $\varphi=0$ , the condition of  $\varphi\ge0.0001$  will be imposed when using this equation.

**Note** : When a uniaxial compression  $\sigma$  is considered, the condition that MC criterion be reached is that  $\sigma = R_c$  and the condition that the elliptic cap criterion be reached is that:

$$\sigma = \frac{1 - a_1 \varphi}{\sqrt{a_2 + \varphi / 9}} \sigma_M$$

So the condition that for a uniaxial compression the MC criterion be reached before the elliptical cap is:

$$\frac{1-a_1\phi_0}{\sqrt{a_2+\phi_0/9}}\,\sigma_M^0 > \frac{2C\cos\phi}{1-\sin\phi}$$

#### **Parameters** Nb = 17Param1 = EYoung modulus Param2 = vPoisson ration Param3 = CInitial Cohesion Param4 = $\phi$ (°) Friction Angle Param5 = $\psi$ (°) **Dilation** Angle Param6 = $\sigma^{T}$ Tensile Strength Param7 = $\sigma_M^0$ *Limit compression stress* (positive for compression) Param8 = $\phi_0$ *Initial porosity* $(0.0001 \le \varphi_0 \le 1)$ positive number Param9 = $a_1$ $Param10 = a_2$ positive number $Param11 = a_3$ positive number $Param12 = k_1$ $Param13 = k_2$ Param14 = $\varepsilon_a^p$ : Limit axial plastic strain for linear hardening (positive for compression) Param $15 = k_3$ $Param 16 = k_4$ Param17 = $\varepsilon_{v}^{p}$ : Limit plastic strain for linear hardening (positive for compression)

#### Internal variable

 $V_{in,m}(n,1): \varphi$  (porosity)  $V_{in,m}(n,2): \xi$   $V_{in,m}(n,3): \eta$ *Conditions to be satisfied*:  $0 < 1-a_1\varphi_0$ 

| 31125                                                                                                                                                                                                                                   | Elastoplastic Mohr-Coulomb with compressibility cap (MC-CAP) |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|--|
| Nb : 17<br>Param1 = E<br>Param2 = v<br>Param3 = C<br>Param4 = $\phi$<br>Param5 = $\psi$<br>Param6 = $\sigma^T$<br>Param7 = $\sigma_{A}^0$<br>Param8 = $\phi_0$<br>Param9 = $a_1$<br>Param10 = $a_1$<br>Param11 = $a_1$<br>Param12 = $k$ | $Param 17 = \varepsilon^{p}_{\nu}$                           |  |  |  |  |  |

## <u>31130</u> : Viscoelastic isotropic material : Linear elasticity and Norton-Hoff creep law

$$\begin{split} \dot{\boldsymbol{\varepsilon}} &= \dot{\boldsymbol{\varepsilon}}^{e} + \dot{\boldsymbol{\varepsilon}}^{v} \\ \dot{\boldsymbol{\varepsilon}}^{e} &= \frac{1+v}{E} \dot{\boldsymbol{\sigma}} - \frac{v}{E} tr(\dot{\boldsymbol{\sigma}}) \,\boldsymbol{\delta} \,, \qquad \qquad \dot{\boldsymbol{\varepsilon}}^{v} &= \frac{3}{2} \alpha \, \boldsymbol{\xi}^{\alpha-1} \dot{\boldsymbol{\xi}} \, \frac{\boldsymbol{S}}{\boldsymbol{\sigma}_{e}} \end{split}$$

with:

**S** stress deviator,  $S_{ij} = \sigma_{ij} - \frac{1}{3}\sigma_{kk}\delta_{ij}$ , Mises equivalent stress  $\sigma_e = \sqrt{3J_2}$ ,  $J_2 = \frac{1}{2}S_{ij}S_{ij}$  $\dot{\xi} = (a < \sigma_e - \sigma_c >^n)^{1/\alpha}$ 

where, the *positive part* function <'> is defined as:

$$\begin{array}{ll} < x > = 0 & if \quad x < 0 \\ < x > = x & if \quad x \ge 0 \end{array}$$

To avoid numerical problems near  $\xi = 0$ , the law is completed by:

$$\dot{\pmb{\epsilon}}^{\scriptscriptstyle \nu} = \frac{3}{2} \alpha \, \epsilon_{\scriptscriptstyle 0}^{\scriptscriptstyle \alpha - {\scriptscriptstyle 1}} \dot{\xi} \; \frac{\pmb{S}}{\sigma_{\scriptscriptstyle e}} \; \; \text{if} \; \; \xi^{\alpha} \leq \, \epsilon_{\scriptscriptstyle 0}$$

If  $\alpha = 1$ , the Norton-Hoff creep model is recovered. For a uniaxial stress the Lemaitre creep law is found:  $\epsilon(t) = a \langle \sigma - \sigma_c \rangle^n t^{\alpha}$ 

The four parameters a, n,  $\alpha$ ,  $\sigma_c$  can thus be identified from uniaxial creep results.

Nb = 7 Param1 = E Param2 = v Param3 = a (attention to the stress and time unities) Param4 = n Param5 =  $\alpha$ Param6 =  $\sigma_c$ Param7 =  $\epsilon_0$ 

Internal Variables: Vin(n,1): reserved for damage (not existing for this material) Vin(n,2) :  $\xi$ , internal

| 31130                    | Linear Isotropic Elasticity with Lemaitre-<br>Norton-Hoff Creep law |
|--------------------------|---------------------------------------------------------------------|
| Nb : 7                   |                                                                     |
| Param1 = E               |                                                                     |
| Param2 = v               |                                                                     |
| Param3 = a               | (attention to the stress and time unities)                          |
| Param $4 = n$            |                                                                     |
| Param $5 = \alpha$       |                                                                     |
| Param6 = $\sigma_c$      |                                                                     |
| Param7 = $\varepsilon_0$ |                                                                     |

# <u>31140</u> : Viscoplastic isotropic material : Linear <u>Elasticity & Associate Plasticity with Mises</u> <u>criterion and Kinematic + isotropic hardening &</u> <u>Lemaitre viscoelasticity</u>

$$\dot{\mathbf{\epsilon}} = \dot{\mathbf{\epsilon}}^e + \dot{\mathbf{\epsilon}}^p + \dot{\mathbf{\epsilon}}^v$$

Elasticity:

$$\dot{\boldsymbol{\varepsilon}}^{e} = \frac{1+\nu}{E} \dot{\boldsymbol{\sigma}} \cdot \frac{\nu}{E} tr(\dot{\boldsymbol{\sigma}}) \,\boldsymbol{\delta} ,$$
  
$$\dot{\boldsymbol{\varepsilon}}^{p} = \dot{\boldsymbol{\delta}} F \qquad \text{if } F < 0 \text{ then } \dot{\boldsymbol{\lambda}} =$$

Plasticity:

$$\dot{\mathbf{t}} \mathbf{y}: \qquad \dot{\mathbf{\epsilon}}^{p} = \dot{\lambda} \frac{\partial F}{\partial \mathbf{\sigma}} , \qquad \begin{array}{l} \text{if } F < 0 \ \text{then } \lambda = 0 \\ \text{if } F = 0 \ \text{then } \dot{\lambda} \ge 0 , \ \dot{F} \le 0 , \ \dot{\lambda} \dot{F} = 0 \\ \end{array}$$

$$\text{with: } \qquad F(\mathbf{\sigma}, \mathbf{X}, R) = \sqrt{J_{2}(\mathbf{\sigma} - \mathbf{X})} - K \\ J_{2}(\mathbf{\sigma} - \mathbf{X}) = \frac{1}{2} S_{ij}^{'} S_{ij}^{'} , \qquad S_{ij}^{'} = \mathbf{\sigma}_{ij} - X_{ij} - \frac{1}{3} (\mathbf{\sigma}_{kk} - X_{kk}) \delta_{ij} \qquad (X_{kk} = 0) \\ K = K_{0} + K_{1} (1 - e^{-bp}) \qquad \dot{p} = \sqrt{\frac{2}{3}} \dot{\mathbf{\epsilon}}^{p} : \dot{\mathbf{\epsilon}}^{p} \\ \mathbf{X} = \mathbf{X}_{1} + \mathbf{X}_{2} , \qquad \dot{\mathbf{X}}_{1} = c_{1} \dot{\mathbf{\epsilon}}^{p} - d_{1} \dot{p} \mathbf{X}_{1} , \qquad \dot{\mathbf{X}}_{2} = c_{2} \dot{\mathbf{\epsilon}}^{p} - d_{2} \dot{p} \mathbf{X}_{2} .$$

For the initial state of the material, p=0 and  $X_1 = X_2 = 0$ .

<u>Viscous deformation</u>:  $\dot{\mathbf{\epsilon}}^{\nu} = \frac{3}{2} \alpha \xi^{\alpha - 1} \dot{\xi} \frac{S}{\sigma_e}$ with: Mises equivalent stress  $\sigma_e = \sqrt{\frac{3}{2} S_{ij} S_{ij}}$ ,  $S_{ij} = \sigma_{ij} - \frac{1}{3} \sigma_{kk} \delta_{ij}$  $\dot{\xi} = (a < \sigma_e - \sigma_c >^n)^{1/\alpha}$ 

Where  $\sigma_c$  is a stress threshold and <> represents the *positive part* function:

$$\langle x \rangle = 0$$
 if  $x < 0$   
 $\langle x \rangle = x$  if  $x \ge 0$ 

To avoid numerical problems near  $\xi = 0$ , the law is completed by:  $\dot{\mathbf{\epsilon}}^{\nu} = \frac{3}{2} \alpha \, \varepsilon_0^{\alpha-1} \dot{\xi} \, \frac{\mathbf{S}}{\sigma_e}$  if  $\xi^{\alpha} \leq \varepsilon_0$ .

For a uniaxial stress the creep law becomes (Lemaitre creep law with stress threshold):  $\varepsilon(t) = a \langle \sigma - \sigma_c \rangle^n t^{\alpha}$ 

The four parameters *a*, *n*,  $\alpha$ ,  $\sigma_c$  can thus be identified from uniaxial creep results.

If  $\alpha = 1$ , the Norton-Hoff creep model is recovered:  $\dot{\mathbf{e}}^{\nu} = \frac{3}{2} a \left\langle \sigma_e - \sigma_c \right\rangle^n \frac{\mathbf{S}}{\sigma_e}$ Number of parameters 14:

Fracsima - 2016

Nb = 14Param1 = EParam2 = v $Param3 = K_0$  $Param4 = K_1$ Param5 = bParam6 =  $c_1$ Param7 =  $d_1$  $Param8 = c_2$ Param9 =  $d_2$ Param10 = a(attention to the stress and time unities) Param11 = nParam12 =  $\alpha$ Param13 =  $\sigma_c$ Param $14 = \varepsilon_0$ 

Internal Variables: 9 Vin(n,1): reserved for damage (not existing for this material) Vin(n,2) : Vin(n,3), Vin(n,4):  $X_{xx}^{l}$ ,  $X_{yy}^{l}$ ,  $X_{xy}^{l}$ ,  $(X_{zz}^{l} = -X_{xx}^{l} - X_{yy}^{l})$ Vin(n,5) : Vin(n,6), Vin(n,7):  $X_{xx}^{2}$ ,  $X_{yy}^{2}$ ,  $(X_{zz}^{2} = -X_{xx}^{2} - X_{yy}^{2})$ Vin(n,8) : pVin(n,9) :  $\xi$ , internal

| 31140           | Lemaitre-Chaboche Elastic-Plastic with<br>Lemaitre-Norton-Hoff Creep |  |  |  |  |  |
|-----------------|----------------------------------------------------------------------|--|--|--|--|--|
| Nb : 14         |                                                                      |  |  |  |  |  |
| Param $1 = E$   | Param11 = n                                                          |  |  |  |  |  |
| Param $2 = v$   | $Param 12 = \alpha$                                                  |  |  |  |  |  |
| Param $3 = K_0$ | $Param 13 = \sigma_c$                                                |  |  |  |  |  |
| Param $4 = K_1$ | $Param 14 = \varepsilon_0$                                           |  |  |  |  |  |
| Param $5 = b$   |                                                                      |  |  |  |  |  |
| Param $6 = c_1$ |                                                                      |  |  |  |  |  |
| Param7 = $d_1$  |                                                                      |  |  |  |  |  |
| Param8 = $c_2$  |                                                                      |  |  |  |  |  |
| Param9 = $d_2$  |                                                                      |  |  |  |  |  |
| Param10 = a     |                                                                      |  |  |  |  |  |

# 31200 : Linear Elasticity with General Anisotropy

In 2D plane problems,  $\epsilon_{13} = \epsilon_{23} = \sigma_{13} = \sigma_{23} = 0$ , and the Hook law reduces to :

| $\int \sigma_{11}$ |   | $\int c_{11}$ | $c_{12}$ | $c_{13}$               | $c_{16}$               | $\left[ \epsilon_{11} \right]$                                                                 |
|--------------------|---|---------------|----------|------------------------|------------------------|------------------------------------------------------------------------------------------------|
| $\sigma_{22}$      | _ |               | $c_{22}$ | $c_{23}$               | <i>c</i> <sub>26</sub> | $\begin{bmatrix} \boldsymbol{\varepsilon}_{11} \\ \boldsymbol{\varepsilon}_{22} \end{bmatrix}$ |
| $\sigma_{33}$      | _ |               |          | <i>c</i> <sub>33</sub> | c <sub>36</sub>        | $\begin{bmatrix} \boldsymbol{\epsilon}_{33} \\ 2\boldsymbol{\epsilon}_{12} \end{bmatrix}$      |
| $\sigma_{12}$      |   |               |          |                        | $c_{66}$               | $2\varepsilon_{12}$                                                                            |

The elastic parameters, in the more general case of anisotropy are the 10 followings:

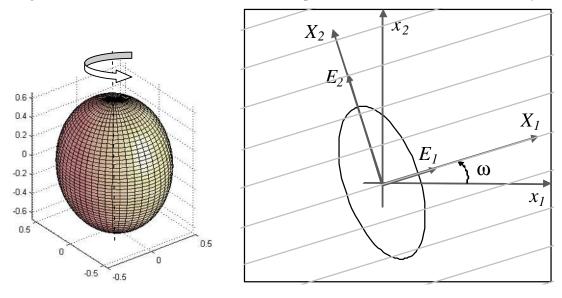
Nb = 10 Param1 =  $c_{11}$ , Param2 =  $c_{12}$ , Param3 =  $c_{13}$ , Param4 =  $c_{16}$ , Param5 =  $c_{22}$ , Param6 =  $c_{23}$ , Param7 =  $c_{26}$ , Param8 =  $c_{33}$ , Param9 =  $c_{36}$ , Param10=  $c_{66}$ 

| 31200              | Linear Elasticity with |
|--------------------|------------------------|
|                    | General Anisotropy     |
| Nb : 10            |                        |
| Param1 = $c_{11}$  |                        |
| Param2 = $c_{12}$  |                        |
| Param $3 = c_{13}$ |                        |
| Param4 = $c_{16}$  |                        |
| Param $5 = c_{22}$ |                        |
| Param6 = $c_{23}$  |                        |
| Param7 = $c_{26}$  |                        |
| Param8 = $c_{33}$  |                        |
| Param9 = $c_{36}$  |                        |
| Param10= $c_{66}$  |                        |

## 31300 : Linear elasticity with Saint Venant anisotropy

The Saint Venant ellipsoïdal material (Pouya 2007) is a 3D anisotropic material depends on four parameters, three Young's modulus ( $E_1$ ,  $E_2$ ,  $E_3$ ) and Poisson ration v.

The basic assumption is that the Young's modulus in different directions varies in special way making that indicator surface of its fourth root is a spheroid. The tensor s and c defined by:



| $\left[\sigma_{11}\right]$ |   | $\int c_{11}$          | $c_{12}$               | <i>c</i> <sub>13</sub> | $c_{16}$               | $\epsilon_{11}$                    |   | $\left[ \begin{array}{c} \epsilon_{11} \end{array} \right]$ |   | <i>s</i> <sub>11</sub> | <i>s</i> <sub>12</sub> | <i>s</i> <sub>13</sub> | <i>s</i> <sub>16</sub> | $\left\lceil \sigma_{_{11}} \right\rceil$                                 |
|----------------------------|---|------------------------|------------------------|------------------------|------------------------|------------------------------------|---|-------------------------------------------------------------|---|------------------------|------------------------|------------------------|------------------------|---------------------------------------------------------------------------|
| $\sigma_{22}$              | = | <i>c</i> <sub>12</sub> | <i>c</i> <sub>22</sub> | <i>c</i> <sub>23</sub> | <i>c</i> <sub>26</sub> | $\epsilon_{22}$<br>$\epsilon_{33}$ |   | <b>ε</b> <sub>22</sub>                                      | _ | <i>s</i> <sub>12</sub> | <i>s</i> <sub>22</sub> | <i>s</i> <sub>23</sub> | <i>s</i> <sub>26</sub> | $\begin{bmatrix} \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \end{bmatrix}$ |
| $\sigma_{33}$              | _ | <i>c</i> <sub>13</sub> | <i>c</i> <sub>23</sub> | <i>c</i> <sub>33</sub> | <i>c</i> <sub>36</sub> | ε <sub>33</sub>                    | , | ε <sub>33</sub>                                             |   | <i>s</i> <sub>13</sub> | <i>s</i> <sub>23</sub> | <i>s</i> <sub>33</sub> | <i>s</i> <sub>36</sub> | $\sigma_{33}$                                                             |
| $\sigma_{12}$              |   | $c_{16}$               | $c_{26}^{}$            | <i>C</i> <sub>36</sub> | $c_{66}$               | $2\varepsilon_{12}$                |   | $2\varepsilon_{12}$                                         |   | <i>s</i> <sub>16</sub> | $s_{26}$               | <i>s</i> <sub>36</sub> | <i>s</i> <sub>66</sub> | $\sigma_{12}$                                                             |

have the following expressions:

$$\mathbf{s} = \begin{bmatrix} \frac{1}{E_1} & \frac{-\nu}{\sqrt{E_1E_2}} & \frac{-\nu}{\sqrt{E_1E_3}} \\ \frac{-\nu}{\sqrt{E_1E_2}} & \frac{1}{E_2} & \frac{-\nu}{\sqrt{E_2E_3}} \\ \frac{-\nu}{\sqrt{E_1E_3}} & \frac{-\nu}{\sqrt{E_2E_3}} & \frac{1}{E_3} \\ & & \frac{2(1+\nu)}{\sqrt{E_2E_3}} \\ & & \frac{2(1+\nu)}{\sqrt{E_3E_1}} \\ & & \frac{2(1+\nu)}{\sqrt{E_1E_2}} \end{bmatrix}$$

$$c = \frac{1}{(1+\nu)(1-2\nu)} \begin{bmatrix} (1-\nu)E_1 & \nu\sqrt{E_1E_2} & \nu\sqrt{E_1E_3} \\ \nu\sqrt{E_1E_2} & (1-\nu)E_2 & \nu\sqrt{E_2E_3} \\ \nu\sqrt{E_1E_3} & \nu\sqrt{E_2E_3} & (1-\nu)E_3 \\ & & \frac{1-2\nu}{2}\sqrt{E_2E_3} \\ & & \frac{1-2\nu}{2}\sqrt{E_1E_3} \\ & & \frac{1-2\nu}{2}\sqrt{E_1E_2} \end{bmatrix}$$

If two elastic modulus are equal, for instance  $E_1=E_3$ , then a special case of transverse isotropy around the  $x_2$ -axis is found (Figure) depending on only three parameters ( $E_1$ ,  $E_2$ ,  $\nu$ ).

The model can include a rotation  $\omega$  of  $X_2$ -axis, representing the direction with the Young's modulus  $E_2$ , with respect to the  $x_2$ -axis in the plane of calculation ( $x_1$ , $x_2$ ). Note that the out-of-plane modulus  $E_3$  will be equal to  $E_1$ .

Nb = 5 Param1 =  $E_1$ Param2 =  $E_2$ Param3 =  $E_3$ Param4 =  $\nu$ Param5 =  $\omega$  (in degrees)

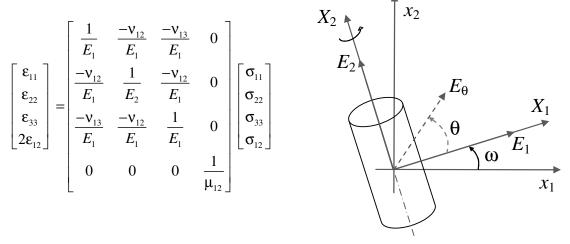
| 31300              | Linear Elasticity with Saint Venant<br>Ellipsoidal Anisotropy |
|--------------------|---------------------------------------------------------------|
| Nb : 5             | 1 17                                                          |
| Param1 = $E_1$     |                                                               |
| Param $2 = E_2$    |                                                               |
| Param $3 = E_3$    | 3                                                             |
| Param $4 = v$      |                                                               |
| Param $5 = \omega$ | (in degrees)                                                  |

## **31400** : Linear elasticity with transverse isotropy

The elasticity of the material has axial symmetry around the  $X_2$ -axis. The axial Young's modulus is  $E_2$  and the transverse one is  $E_1$ . The elastic tensor is defined by five independent parameters  $E_1, E_2, v_{12}, v_{13}, \mu_{12}$  with the following complementary conditions:

$$E_3 = E_1$$
,  $v_{32} = v_{12}$ ,  $v_{31} = v_{13}$ ,

The constitutive equation in a coordinate system with  $x_2$ -axis superposed to the axis of symmetry  $X_2$  reads :



The model can include a rotation  $\omega$  of  $X_2$  with respect to the  $x_2$ -axis in the plane of calculation  $(x_1, x_2)$ . Note that the out-of-plane modulus  $E_3$  will be equal to  $E_1$ .

Note that the Young's modulus in a direction in the radial plane  $(X_1, X_2)$  and making an angle  $\theta$  with  $X_1$  (see the figure) is given by:

$$\frac{1}{E_{\theta}} = \frac{\cos^4 \theta}{E_1} + (\frac{1}{\mu_{12}} - \frac{2\nu_{12}}{E_1})\cos^2 \theta \sin^2 \theta + \frac{\sin^4 \theta}{E_2}$$

For identification of the parameters from test data, note that a coefficient  $v_{21}$  different from  $v_{12}$  could be defined for this material satisfying the symmetry condition:

$$\frac{\mathbf{v}_{21}}{E_2} = \frac{\mathbf{v}_{12}}{E_1}$$

The coefficient  $v_{21}$  can be measured in the following way: a uniaxial compression  $\sigma_{22}$  is applied in the direction  $X_2$  and the strains  $\varepsilon_{22}$  and  $\varepsilon_{11}$  are measured respectively in axial and radial directions  $X_2$  and  $X_1$ . Then  $v_{21} = -\varepsilon_{11}/\varepsilon_{22}$  and  $v_{21}$  is obtained from the above symmetry condition. It would be possible also to apply the uniaxial compression  $\sigma_{11}$  in direction  $X_1$  and measure the strains  $\varepsilon_{11}$  and  $\varepsilon_{22}$  in directions  $X_1$  and  $X_2$ . The problem in this case has not axial symmetry. But we get directly  $v_{12} = -\varepsilon_{22}/\varepsilon_{11}$ . No difference is to be considered for  $v_{31}$  and  $v_{13}$ .

Nb = 6 Param1 =  $E_1$ Param2 =  $E_2$ Param3 =  $v_{12}$ Fracsima - 2016 Param4 =  $v_{13}$ Param5 =  $\mu_{12}$ Param6 =  $\omega$  (in degrees)

| 31400                                     | Linear Elasticity with Transverse Isotropy |
|-------------------------------------------|--------------------------------------------|
| Nb: 6<br>Param1 = $E_1$                   |                                            |
| Param $2 = E_2$                           |                                            |
| $Param3 = v_1$ $Param4 = v_1$             | -                                          |
| Param $5 = \mu_1$<br>Param $6 = \omega_1$ |                                            |

## <u>**31410**</u> : Linear elasticity with transverse isotropy + Drucker-Prager plastic criterion $\dot{s} = \dot{s}^e + \dot{s}^p$

$$\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon} + \boldsymbol{\varepsilon}$$
$$F(\boldsymbol{\sigma}) = \sqrt{J_2} + \gamma I_1 - K$$

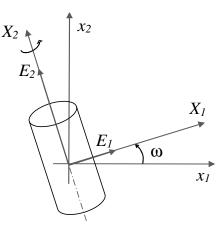
Elasticity : the same model than 31400 : transverse isotropy Plasticity : the same model than 31110 : Drucker-Prager

Nb = 8 Param1 =  $E_1$ Param2 =  $E_2$ Param3 =  $v_{12}$ Param4 =  $v_{13}$ Param5 =  $\mu_{12}$ Param6 =  $\omega$  (in degrees) Param7 = KParam8 =  $\sin\alpha$ 

| 31410                          | Linear Elasticity with Transverse Isotropy<br>and Drucker-Prager Plastic Criterion |
|--------------------------------|------------------------------------------------------------------------------------|
| Nb: 8                          |                                                                                    |
| Param1 = $E_1$                 |                                                                                    |
| $Param2 = E_2$                 |                                                                                    |
| $Param3 = v_{12}$              |                                                                                    |
| $Param4 = v_{13}$              |                                                                                    |
| $Param5 = \mu_{12}$            |                                                                                    |
| Param6 = $\omega$ (in degrees) |                                                                                    |
| Param7 = K                     |                                                                                    |
| $Param8 = sin\alpha$           |                                                                                    |

# <u>**31430**</u> : ANELVIP: Anisotropic elasto-viscoplastic material : Transverse Isotropic elasticity, anisotropic Mohr-Coulomb or Drucker-Prager plasticity and Lemaitre creep law

This elasto-visco-plastic material has axial symmetry around an axis related to the material and designated by  $X_2$  (Figure). This material axis can make an angle  $\omega$  with the  $x_2$ -axis of coordinate system. The elastic behavior corresponds to the general transverse isotropic material around the axis  $X_2$  of the material with five independent parameters. The anisotropic plastic and viscous deformations of the material are defined by a linear transformation from isotropic plastic and viscous deformation models. They have also transverse isotropy around the axis  $X_2$ .



### Constitutive model:

$$\dot{\boldsymbol{\varepsilon}} = \dot{\boldsymbol{\varepsilon}}^e + \dot{\boldsymbol{\varepsilon}}^p + \dot{\boldsymbol{\varepsilon}}^v \tag{1.1}$$

Elasticity: 
$$\dot{\boldsymbol{\epsilon}}^e = \mathbb{C}^{-1} : \dot{\boldsymbol{\sigma}}$$
 (1.2)

Plasticity: 
$$\dot{\boldsymbol{\varepsilon}}^{p} = \dot{\lambda} \frac{\partial \hat{G}}{\partial \boldsymbol{\sigma}} , \qquad \dot{\lambda} = 0 \quad if \quad \tilde{F}(\boldsymbol{\sigma}) < 0$$
(1.3)

Creep: 
$$\dot{\mathbf{\epsilon}}^{\nu} = \frac{3}{2} \alpha \xi^{\alpha - 1} \dot{\xi} \frac{\tilde{S}^{\nu}}{\tilde{\sigma}_{e}^{\nu}}, \quad \dot{\xi} = \left(a \beta^{\nu} < \tilde{\sigma}_{e}^{p} - \sigma_{c} >^{n}\right)^{1/\alpha}$$
(1.4)

With  $\mathbb{C}$  the elastic tensor with transverse isotropy,  $\tilde{F}$  anisotropic Mohr-Coulomb (traction

truncated) or Drucker-Prager criterion and non-associated potential  $\tilde{G}$  and anisotropic Norton-Lemaitre creep law with stress threshold obtained by transformation of isotropic material. The creep part or the plastic part of the model can be excluded to obtain a simple elastoplastic or a simple viscoelastic model.

### Transformation

The material is supposed to be transverse isotropic with the axis of isotropy lying in the plane of modeling  $(x_1, x_2)$ . This axis is represented by  $X_2$  in the figure.

The direction dependency of the strain rate and of the stress threshold for plastic and viscous strain is defined by introducing a transformed  $\tilde{\sigma}$  obtained by as a linear function of  $\sigma$ . This transformation is defined in the following way in the  $(X_1, X_2)$  coordinates:

$$\boldsymbol{\sigma} = \begin{bmatrix} \boldsymbol{\sigma}_{XX} & \boldsymbol{\sigma}_{XY} & \boldsymbol{0} \\ \boldsymbol{\sigma}_{XY} & \boldsymbol{\sigma}_{YY} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{\sigma}_{zz} \end{bmatrix} \rightarrow \tilde{\boldsymbol{\sigma}} = \begin{bmatrix} \boldsymbol{\sigma}_{XX} & f_T \boldsymbol{\sigma}_{XY} & \boldsymbol{0} \\ f_T \boldsymbol{\sigma}_{XY} & f_N \boldsymbol{\sigma}_{YY} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{\sigma}_{zz} \end{bmatrix}$$
(1.5)

- A uniaxial stress in direction  $X_1$ , or any direction perpendicular to  $X_2$  is not changed ( $X_2$  remains an axis of symmetry)
- A uniaxial stress  $\sigma$  in direction  $X_2$  is changed in a uniaxial stress  $f_2 \sigma$
- A pure shear stress  $\tau$  in direction  $X_1X_2$  is changed in a pure shear stress  $f_T \tau$  in the same direction.

We put:

$$f_{\rm N} = 1 + a_N$$
 ,  $f_T = \sqrt{f_N + b_T}$  (1.6)

The constants  $a_N$  and  $b_T$  are considered as two material's parameters describing its anisotropy. We note also:

$$f_T = 1 + a_T \tag{1.7}$$

with the following relations:

$$a_T = \sqrt{1 + a_N + b_T} - 1$$
,  $b_T = f_T^2 - f_N = a_T (2 + a_T) - a_N$  (1.8)

We note  $\tilde{\sigma}^{p}$  the transformed stress  $\tilde{\sigma}$  obtained with the parameters  $(a_{N}^{p}, a_{T}^{p})$  and  $\tilde{\sigma}^{v}$  obtained with  $(a_{N}^{v}, a_{T}^{v})$ .

We note  $\tilde{S}$  and  $\tilde{\sigma}_e$  the deviator stress and Mises equivalent stress associated to  $\tilde{\sigma}$  and define:

$$\beta = \frac{\tilde{\sigma}_e}{\sigma_e} \tag{1.9}$$

For a *uniaxial stress* in the direction  $\theta$  with respect to the  $x_1$ , the ratio  $\beta$  has the following expression:

$$\beta(\overline{\theta}) = \sqrt{\left(1 + a_N \sin^2 \overline{\theta}\right)^2 + 3b_T \sin^2 \overline{\theta} \cos^2 \overline{\theta}}$$
(1.10)

Where:

$$\overline{\theta} = \theta - \omega \tag{1.11}$$

The transformation applied to the viscous strain  $\tilde{\epsilon} = \beta^{\nu} \epsilon$  allows making the creep law anisotropic (Figure). But note that a uniaxial stress  $\sigma$  in a direction  $\theta$  different of  $\omega$  is not transformed to a uniaxial stress and so different  $\beta$  rations are obtained for UCS or for the creep rate as it will be seen below.

#### I) Elasticity

The elastic behavior has axial symmetry or the transverse isotropy around the axis  $X_2$  (see the figure). The Young's modulus in direction  $X_2$  is  $E_2$  and in directions  $X_1$  and  $X_3$  (out of plane), equal to  $E_1$ . The three other parameters are the Poisson's ratios  $v_{12}$  and  $v_{13}$  and the shear modulus  $\mu_{12}$ . The elastic model here is exactly the same that the model 31400 with the five parameters ( $E_1$ ,  $E_2$ ,  $v_{12}$ ,  $v_{13}$ ,  $\mu_{12}$ ) and the angle  $\omega$  between the axis of symmetry  $X_2$  and the

coordinate axis  $x_2$ . See the material 31400 for the method of identification of parameters and the Young's modulus in different directions of the material.

#### **II) Plastic deformation**

The plastic deformation is defined by the plastic criterion  $\tilde{F}$  and the plastic potential  $\tilde{G}$  with the following relations:

$$\tilde{F}(\boldsymbol{\sigma}) = F(\tilde{\boldsymbol{\sigma}}^p) , \quad \tilde{G}(\boldsymbol{\sigma}) = G(\tilde{\boldsymbol{\sigma}}^p)$$
 (1.12)

Where the transformed stress  $\tilde{\sigma}^{p}$  is deduced from  $\sigma$  with the set of parameters  $(a_{N}^{p}, a_{T}^{p})$ . The plastic yield rule reads:

$$\tilde{F}(\mathbf{\sigma}) \leq 0, \qquad \dot{\mathbf{\epsilon}}^{p} = \dot{\lambda} \frac{\partial \tilde{G}}{\partial \mathbf{\sigma}}$$
 (1.13)

with the standard conditions for  $\dot{\lambda}$ :  $\dot{\lambda} \ge 0$ , and  $\dot{\lambda} = 0$  if  $\tilde{F}(\sigma) < 0$ .

The criterion F and potential G are the Mohr-Coulomb or Drucker-Prager according to the  $11^{\text{th}}$  variable *Option*:

#### Option 0: Mohr-Coulomb Criterion

If *Option* = 0, *F* and *G* are the Mohr-Coulomb criterion and non-associate potential for the parameters *C*,  $\phi$ ,  $\psi$  and  $\sigma_T$  (see the model 31120).

$$F(\tilde{\mathbf{\sigma}}^{p}) = \frac{\tilde{\mathbf{\sigma}}_{1}^{p} - \tilde{\mathbf{\sigma}}_{3}^{p}}{2} + \frac{\tilde{\mathbf{\sigma}}_{1}^{p} + \tilde{\mathbf{\sigma}}_{3}^{p}}{2}\sin\phi - C\cos\phi \le 0$$
(1.14)

$$G(\tilde{\mathbf{\sigma}}^{p}) = \frac{\tilde{\mathbf{\sigma}}_{1}^{p} - \tilde{\mathbf{\sigma}}_{3}^{p}}{2} + \frac{\tilde{\mathbf{\sigma}}_{1}^{p} + \tilde{\mathbf{\sigma}}_{3}^{p}}{2} \sin \psi$$
(1.15)

The Uniaxial Compressive Strength is then given by:

$$R_{c}(\overline{\theta}) = \frac{1}{\beta_{UCS}(\overline{\theta})} \frac{2C\cos\phi}{1-\sin\phi}$$
(1.16)

Where:

If 
$$f_T^2 > f_N$$
, or  $b_T > 0$ :  

$$\beta_{UCS}\left(\overline{\theta}\right) = \frac{\sqrt{\left(1 + a_N \sin^2 \overline{\theta}\right)^2 + 4b_T \sin^2 \overline{\theta} \cos^2 \overline{\theta}} - \left(1 + a_N \sin^2 \overline{\theta}\right) \sin \phi}{1 - \sin \phi}$$
(1.17)

If 
$$f_T^2 < f_N$$
, or  $b_T < 0$ :

$$\beta_{UCS}\left(\overline{\Theta}\right) = \frac{1}{2} \left( 1 + a_N \sin^2 \overline{\Theta} + \sqrt{\left(\left(1 + a_N \sin^2 \overline{\Theta}\right)\right)^2 + 4b_T \sin^2 \overline{\Theta} \cos^2 \overline{\Theta}} \right)$$
(1.18)

For the special case  $f_T^2 = f_N$ , or  $b_T = 0$ , one finds:

$$b_T = 0 \rightarrow \beta_{UCS} \left(\overline{\Theta}\right) = 1 + a_N \sin^2 \overline{\Theta}$$
 (1.19)

This allows defining the adequate anisotropic UCS for a variety of rock-type materials. Two examples are given in the figures below for a rock with a weak anisotropy of UCS and a jointed rock with high UCS anisotropy.

Note that in all cases  $\beta_{UCS}(0) = 1$ ,  $\beta_{UCS}(\pi/2) = f_N$  and this allows determining  $f_N$  or  $a_N$ . Then  $f_T$  or  $b_T$  can be determined or by considering the strength reduction in another direction, and instance in the direction  $\theta = \omega + \pi/4$ .

#### Example 1 : Rock with weak anisotropy

Consider a bedded or schistose rock with bedding plane making and angle  $\omega$  with the  $x_1$ -axis of coordinates. Suppose that triaxial tests for compression axis parallel to the bedding plane have determined the cohesion *C* and friction angle  $\phi$  so that the UCS in direction parallel to

the bedding plane is  $R_c(\omega) = \frac{2C\cos\phi}{1-\sin\phi}$ . Then suppose that a UCS different with a factor 1/ $\beta$  is

measured in the direction perpendicular to the bedding plane:

$$R_c(\omega + \frac{\pi}{2}) = \frac{1}{\beta}R_c(\omega)$$

Then, we can take  $a_N^p = \beta - 1$  and  $b_T^p = 0$  to obtain an ellipsoidal shape of UCS in different directions for this rock (see Figure below left).

#### **Example 2** : Jointed Rock

Consider a sedimentary or fractured rock mass with weakness planes making and angle  $\omega$  with the  $x_1$ -axis of coordinates. Suppose that the strength criterion of the weakness planes or rock joints be given by a cohesion  $c^j$  and friction angle  $\phi^j$ :

$$\tau = \sigma_n \tan \phi^j + c^j \tag{1.20}$$

Generally in this case the strength criterion of intact rock is assumed isotropic but in order to write a more general relation, we assume the UCS of the intact rock in the jointing direction is  $(1+a_N)$  time the strength in the perpendicular direction, with the possibility of taking  $a_N = 0$  for the isotropic intact rock matrix. The parameter  $b_T$  can be determined by considering the UCS in the direction making  $\pi/4$  with the jointing plane. In this case we have  $\overline{\theta} = \pi/4$  and on the joint plane we have:

$$\tau = \sigma \sin \theta \cos \theta = \sigma / 2, \quad \sigma_n = \sigma \sin^2 \theta = \sigma / 2$$
$$|\tau| = \sigma_n \tan \phi^j + c^j \quad \to \sigma = \frac{2c^j}{1 - \tan \phi^j}$$

So the expected compressive strength for  $\overline{\theta} = \pi/4$  is given by:

$$R_{c}(\pi/4) = \frac{2c^{j}}{1 - \tan\phi^{j}}$$
(1.21)

Note that the expected  $R_c(\pi/4)$  can result from theoretical calculation (1.21) or from experiment by testing samples oriented  $\pi/4$  to the jointing plane. The compressive strength in the direction parallel to the jointing plane ( $\overline{\theta} = 0$ ) is that of the intact rock and given by

$$R_c(0) = \frac{2C\cos\phi}{1-\sin\phi} \tag{1.22}$$

Then we note:

$$\beta_{\pi/4}^{UCS} = \frac{R_c(0)}{R_c(\pi/4)} = \frac{2C\cos\phi/(1-\sin\phi)}{2c^j/(1-\tan\phi^j)}$$
(1.23)

The strength of the jointed rock in direction  $\overline{\theta} = \pi/4$  is in principle smaller than that of the intact rock and so  $\beta_{\pi/4}$  should be greater than 1 and then equation (1.17) with  $b_T > 0$  must be considered. For  $\overline{\theta} = \pi/4$  this equation provides:

$$\beta_{UCS}(\pi/4) = \frac{\sqrt{(1+a_N/2)^2 + b_T} - (1+a_N/2)\sin\phi}{1-\sin\phi}$$
(1.24)

By solving the equation  $\beta_{UCS}(\pi/4) = \beta_{\pi/4}^{UCS}$  one finds:

$$b_{T} = \left[ \left( \beta_{\pi/4}^{UCS} \right)^{2} - \left( 1 + a_{N} / 2 \right)^{2} - \left( \beta_{\pi/4}^{UCS} - \left( 1 + a_{N} / 2 \right) \right)^{2} \sin \phi \right] \left( 1 - \sin \phi \right)$$
(1.25)

And for the simple case of isotropic intact rock ( $a_N=0$ ,  $f_N=1$ ):

$$b_{T} = \left[ \left( \beta_{\pi/4}^{UCS} \right)^{2} - 1 - \left( \beta_{\pi/4}^{UCS} - 1 \right)^{2} \sin \phi \right] (1 - \sin \phi)$$
(1.26)

See an example of the UCS of this type of jointed rock in the figure below right.

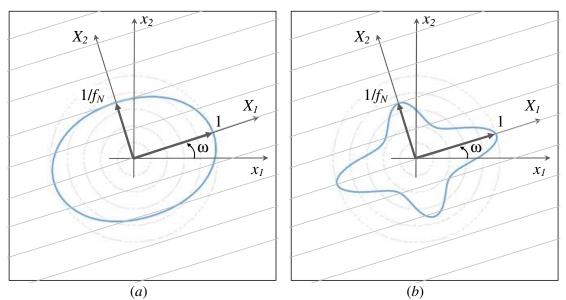


Figure: Different cases of UCS anisotropy: (a) Weak anisotropy for rock matrix:  $\omega = 18^{\circ}$ ,  $a_T^p = 0.4$ ,  $b_T^p = 0$  and (b) anisotropic UCS for a jointed rock:  $\omega = 18^{\circ}$ ,  $a_T^p = 0.4$ ,  $b_T^p = 1.5$ 

Also the criterion is truncated by the traction limit  $\sigma_T$  (see the material 31120). Note the transformed stress  $\tilde{\sigma}^p$  will be compared to  $\sigma_T$  and so the tensile strength will be anisotropic in the same way that the plastic criterion.

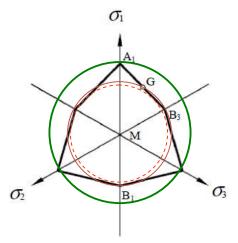
#### **Options 1,2,3** : Drucker-Prager Criterion

If *Option* = 1,2,3 *F* and *G* are the Drucker-Prager criterion and non-associate potential for the parameters *K*,  $\alpha_{\phi}$  and  $\alpha_{\psi}$  defined as follows:

*Option* =1: External corners: 
$$K = \frac{6C\cos\phi}{3-\sin\phi}$$
,  $\sin\alpha_{\phi} = \frac{2\sin\phi}{3-\sin\phi}$ ,  $\sin\alpha_{\psi} = \frac{2\sin\psi}{3-\sin\psi}$  (1.27)

*Option* =2: Internal corners: 
$$K = \frac{6C\cos\phi}{3+\sin\phi}$$
,  $\sin\alpha_{\phi} = \frac{2\sin\phi}{3+\sin\phi}$ ,  $\sin\alpha_{\psi} = \frac{2\sin\psi}{3+\sin\psi}$  (1.28)

*Option* =3: Tangent to faces: 
$$K = \frac{3C\cos\phi}{\sqrt{3+\sin^2\phi}}$$
,  $\sin\alpha_{\phi} = \frac{\sin\phi}{\sqrt{3+\sin^2\phi}}$ ,  $\sin\alpha_{\psi} = \frac{\sin\psi}{\sqrt{3+\sin^2\psi}}$  (1.29)



Equivalent Drucker-Prager parameters for Mohr-Coulomb: Option 1: circle passing by external corners (green circle), Option 2: passing by internal corners (red circle), Option 3: tangent to faces (dashed-line circle).

*F* is Drucker-Prager criterion calculated with the transformed stress  $\tilde{\sigma}_e^p$  and the parameters *K*,  $\alpha_{\phi}$  and  $\tilde{G}$  is the plastic potential with a different dilatancy angle  $\alpha_{\psi}$ :

$$\tilde{F}(\boldsymbol{\sigma}) = F(\tilde{\boldsymbol{\sigma}}^{p}) = \tilde{\boldsymbol{\sigma}}_{e}^{p} + \sin \alpha_{\phi} \tilde{I}^{p} - K \quad , \qquad \tilde{G}(\boldsymbol{\sigma}) = G(\tilde{\boldsymbol{\sigma}}^{p}) = \tilde{\boldsymbol{\sigma}}_{e}^{p} + \sin \alpha_{\psi} \tilde{I}^{p} \quad (1.30)$$

 $\tilde{\sigma}_{e}^{p}$  and  $\tilde{I}^{p}$  are the equivalent stress and the first invariant associated to  $\tilde{\sigma}^{p}$ :

For Drucker-Prager case (options 1,2,3), the tensile strength truncation  $\sigma_T$  will not be taken into account.

#### **Option 4** : Plane Mohr-Coulomb Criterion

If *Option* = 4 *F* and *G* are the Plane Mohr-Coulomb criterion and non-associate potential for the parameters *C*,  $\phi$ ,  $\psi$  and  $\sigma_T$  (see the model 31120). In Plane Mohr-Coulomb (PMC) criterion, the out-of-plane stress is not considered or, equivalently, is supposed to be the intermediate principal stress. The extreme principal stresses are deduced from the stress components ( $\sigma_{xx}$ ,  $\sigma_{yy}$ ,  $\sigma_{xy}$ ):

$$\sigma_{1} = \frac{\sigma_{xx} + \sigma_{yy} + \sqrt{\left(\sigma_{xx} - \sigma_{yy}\right)^{2} + 4\sigma_{xy}^{2}}}{2}$$

$$\sigma_{3} = \frac{\sigma_{xx} + \sigma_{yy} - \sqrt{\left(\sigma_{xx} - \sigma_{yy}\right)^{2} + 4\sigma_{xy}^{2}}}{2}$$
(1.31)

And with these stresses, calculated from the transformed stress tensor, the criterion F and plastic potential G are the same that (1.14) and (1.15) for the Mohr-Coulomb option.

The tensile strength truncation  $\sigma_T$  is taken into account in this PMC material.

#### Softening plasticity

The cohesion *C*, the tensile strength  $\sigma_T$  and the angle  $\phi$  in the here-above relations can vary with the plastic shear strain  $\gamma$ . The evolution is given by the *hardening law* (including softening as negative hardening) depending on three additional parameters: the *residual cohesion*  $C_r$ , the *residual friction angle*  $\phi_r$  and the brittleness parameter *B*. Two parameters of *cohesion and tensile strength reduction*  $\eta_c$  and *friction angle reduction*  $\eta_{\phi}$  are defined as follows:

$$\eta_c = 1 - \frac{C_r}{C_i} = 1 - \frac{\sigma_T}{\sigma_{T_i}}, \quad \eta_{\phi} = 1 - \frac{\tan \phi_r}{\tan \phi_i}$$
(1.32)

 $C_i$  is the initial or intact cohesion,  $\sigma_{Ti}$  the initial tensile strength and  $\phi_i$  the initial friction angle which are constant parameters of the material. For simplicity of notation, they are designated by C,  $\phi$  and  $\sigma_T$  in the list of parameters below (Param7, Param8 and Param10).

The *cumulated plastic strain*  $\gamma$  includes contributions from the plastic shear strain and from the plastic extension. Irreversible shear can degrade the cohesion of the material. Positive values of diagonal components of the plastic strain, representing extensional deformation created by tensile stresses, can also contribute to decohesion of the material. So  $\gamma$  includes two types of contributions and it affects also the cohesion *C* of the material as well as it tensile strength  $\sigma_{T}$ . It is calculated in the following way:

$$\dot{\gamma} = \frac{\dot{\gamma}_s + \dot{\gamma}_T}{2} \tag{1.33}$$

The shear contribution part  $\dot{\gamma}_s$  is calculated from the deviatoric plastic strain increment  $\dot{e}^p$  by the following relations:

$$\dot{\gamma}_{s} = \sqrt{\frac{2}{3}} \dot{\boldsymbol{e}}^{p} : \dot{\boldsymbol{e}}^{p} \qquad \dot{\boldsymbol{e}}^{p} = \dot{\boldsymbol{\epsilon}}^{p} - \frac{1}{3} \dot{\boldsymbol{\epsilon}}_{\nu}^{p} \,\boldsymbol{\delta}, \qquad \dot{\boldsymbol{\epsilon}}_{\nu}^{p} = \dot{\boldsymbol{\epsilon}}^{p} : \boldsymbol{\delta} \qquad (1.34)$$

The traction part  $\dot{\gamma}_T$  is calculated from the positive eigenvalues of the plastic strain rate tensor. The three eigenvalues are  $\dot{\epsilon}_{33}^p$  and the two in-plane values:

$$\dot{\boldsymbol{\varepsilon}}_{+}^{p} = \frac{\dot{\boldsymbol{\varepsilon}}_{11}^{p} + \dot{\boldsymbol{\varepsilon}}_{22}^{p} + \sqrt{\left(\dot{\boldsymbol{\varepsilon}}_{11}^{p} - \dot{\boldsymbol{\varepsilon}}_{22}^{p}\right)^{2} + 4\left(\dot{\boldsymbol{\varepsilon}}_{12}^{p}\right)^{2}}}{2}, \quad \dot{\boldsymbol{\varepsilon}}_{-}^{p} = \frac{\dot{\boldsymbol{\varepsilon}}_{11}^{p} + \dot{\boldsymbol{\varepsilon}}_{22}^{p} + \sqrt{\left(\dot{\boldsymbol{\varepsilon}}_{11}^{p} - \dot{\boldsymbol{\varepsilon}}_{22}^{p}\right)^{2} + 4\left(\dot{\boldsymbol{\varepsilon}}_{12}^{p}\right)^{2}}}{2} \quad (1.35)$$

And  $\dot{\gamma}_{T}$  is the sum of the positive values of these eigenstrains:

٦

$$\dot{\gamma}_{T} = \frac{\dot{\varepsilon}_{+}^{p} + \left| \dot{\varepsilon}_{+}^{p} \right|}{2} + \frac{\dot{\varepsilon}_{-}^{p} + \left| \dot{\varepsilon}_{-}^{p} \right|}{2} + \frac{\dot{\varepsilon}_{33}^{p} + \left| \dot{\varepsilon}_{33}^{p} \right|}{2}$$
(1.36)

It can be noted that for a:

Simple shear: 
$$\dot{\mathbf{\epsilon}}^{p} = \begin{bmatrix} 0 & \dot{\mathbf{\epsilon}}_{12}^{p} & 0 \\ \dot{\mathbf{\epsilon}}_{12}^{p} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \dot{\gamma}_{s} = \frac{2}{\sqrt{3}} |\dot{\mathbf{\epsilon}}_{12}^{p}|, \dot{\gamma}_{T} = |\dot{\mathbf{\epsilon}}_{12}^{p}|, \rightarrow \dot{\gamma} = \left(\frac{1}{2} + \frac{1}{\sqrt{3}}\right) |\dot{\mathbf{\epsilon}}_{12}^{p}| \quad (1.37)$$

And if the plastic strain is traceless  $(tr\dot{\mathbf{e}}^{p} = 0)$  then for uniaxial traction or compression:

$$\dot{\boldsymbol{\varepsilon}}^{p} = \begin{bmatrix} \dot{\varepsilon}_{11}^{p} & 0 & 0\\ 0 & -\dot{\varepsilon}_{11}^{p}/2 & 0\\ 0 & 0 & -\dot{\varepsilon}_{11}^{p}/2 \end{bmatrix}$$
(1.38)

Then for:

Simple traction: 
$$\dot{\varepsilon}_{11}^{p} > 0 \rightarrow \dot{\gamma}_{s} = \dot{\varepsilon}_{11}^{p}, \quad \dot{\gamma}_{T} = \dot{\varepsilon}_{11}^{p} \rightarrow \dot{\gamma} = \dot{\varepsilon}_{11}^{p}$$
 (1.39)

Simple compression: 
$$\dot{\epsilon}_{11}^{p} < 0 \rightarrow \dot{\gamma}_{s} = \left| \dot{\epsilon}_{11}^{p} \right|, \quad \dot{\gamma}_{T} = \left| \dot{\epsilon}_{11}^{p} \right| \rightarrow \dot{\gamma} = \left| \dot{\epsilon}_{11}^{p} \right| \quad (1.40)$$

The evolution of *C*,  $\phi$  and the tensile strength  $\sigma_T$  in ANELVIP is calculated in a general way by:

$$C(\gamma) = (1 - V_c) C_i , \qquad \sigma_T(\gamma) = (1 - V_T) \sigma_{T_i} , \qquad \tan \phi(\gamma) = (1 - V_{\phi}) \tan \phi_i \qquad (1.41)$$

where  $V_c$ ,  $V_T$  and  $V_{\phi}$  are internal variables of the material. Theses internal variables are calculated from the *cumulated plastic strain*  $\gamma$  by the following relations:

$$V_{c}(\gamma) = \eta_{c} \left( 1 - e^{-B\gamma} - M \gamma e^{-B\gamma} \right), \qquad V_{T}(\gamma) = \eta_{c} \left( 1 - e^{-B\gamma} \right), \qquad V_{\phi}(\gamma) = \eta_{\phi} \left( 1 - e^{-B\gamma} \right)$$
(1.42)

*B* is a positive parameter characterizing the brittleness of the material: the decrease of the strength parameters *C*,  $\phi$  and  $\sigma_T$  is faster for greater *B*. The friction angle and the tensile strength can only decrease whereas the cohesion evolution depending on the parameter *M*, and so the compression curve, can present a positive hardening phase and a peak value.

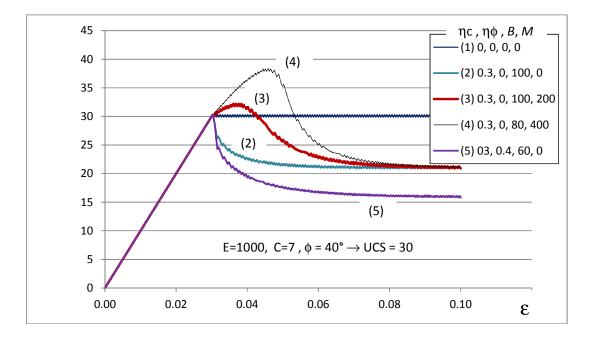
If M < B, the cohesion  $C(\gamma)$  is always decreasing, but if M > B then  $C(\gamma)$  starts by increasing and attains, for a cumulated shear denoted by  $\gamma_{peak}$  a maximum value denoted by  $C_{peak}$ . These values can be determined by derivation of the first relation in (1.42) and one finds:

 $g = \frac{B}{M}$ 

$$\gamma_{peak} = \frac{1-g}{gM}, \qquad C_{peak} = \left[1 - \eta_c + \frac{\eta_c}{ge^{1-g}}\right]C_i \qquad (1.43)$$

where:

(1.44)



**Figure:** Stress-Strain curves for a uniaxial compression test on Anelvip elastoplastic material with different softening parameters.

The perfect plastic material is obtained by posing  $\eta_c = \eta_{\phi} = 0$ . In this case no evolution is calculated for *C*,  $\phi$  and  $\sigma_T$  and *B* is not used.

<u>Note</u>: The softening behavior leads to localization and mechanical instabilities which can well be modeled in Disroc with this Anelvip model. The localization in a sample affects its nominal stress-strain curve. The curves in the figure above are obtained on a FEM model with *one only* (quadrilateral) element in order to avoid localization effects.

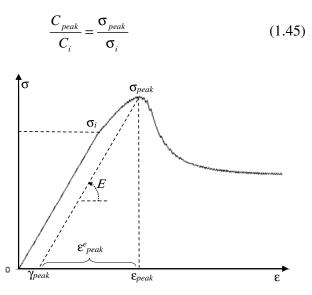
## **Determination of softening parameters**

The two equations (1.43) and (1.44) allow determining the two parameters *B* and *M* from  $\gamma_{peak}$  and  $C_{peak}$  values given by the experimental curves.

However, different methods can be used to determine these two parameters depending on which aspect of experimental curves is more important to reproduce more accurately.

A first method could be to determine *B* from the variation of *C* if pure shear test data are available or from the variation of  $\sigma_T$  if simple traction curves are available. This can happen if numerical homogenization test data are being analyzed. After *B* is determined it is easier to determine *M* from (1.43), (1.44) and  $\gamma_{peak}$  value (see below for estimation of  $\gamma_{peak}$ ).

If only simple compression test data are considered for determination of *B* and *M* then different methods can be used. For instance, let  $\sigma_i$  designate the elastic stress limit (the end of the elastic stage) and  $\sigma_{peak}$  for the maximum stress (Figure) and suppose that the friction angle remains constant ( $\eta_{\phi}=0$ ). From the relation between the UCS and the cohesion,  $R_c=2C\cos\phi/(1-\sin\phi)$ , one finds:



**Figure**: Determination of  $\gamma_{peak}$  and  $\sigma_{peak}$  from experimental curves

Also, if the axial strain at the peak stress is  $\varepsilon_{peak}$  then:

$$\gamma_{peak} = \varepsilon_{peak} - \sigma_{peak} / E \tag{1.46}$$

Note that this relation is valid only for a uniaxial compression with monotonic loading and with E the Young's modulus in the compression direction. In addition, this relation supposes a constant friction angle and also the expression (1.38) of the traceless plastic strain. These assumptions are not always satisfied and specially the last one, (1.38), is not true for Mohr-Coulomb and Drucker-Parger criteria with associate flow rule. In these cases, the equations (1.45) and (1.46) must be considered as approximate relations allowing to determine a first trial set of values for B and M and then determine more accurate values for these parameters by numerical simulation of theoretical curves and comparison to the experimental ones.

From the equation (1.43) one can deduce:

$$\frac{\eta_c C_i}{C_{peak} - C_i + \eta_c C_i} = g e^{1-g}$$
(1.47)

The value of the expression at the left side of (1.47) can be determined from experimental data. But this equation can not be solved explicitly to determine *g*. The following figure allows finding *g* from the left-side value of (1.47).

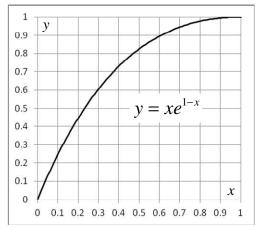


Figure: The function allowing to determine g

Once *g* has been determined, *B* and *M* can be determined from  $\gamma_{peak}$  by:

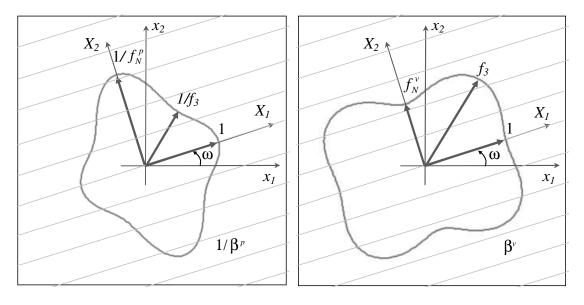
$$B = \frac{1-g}{\gamma_{peak}} , \qquad M = \frac{1-g}{g \gamma_{peak}}$$
(1.48)

However, as mentioned here above the determination of  $\gamma_{peak}$  is not easy in the general case. It can be determined by an iterative method:

First, with starting with the value given by (1.46), a first estimate for *B* and *M* is determined by (1.48). Then the theoretical curve obtained by these parameters is compared to the experimental one. The  $\varepsilon_{peak}$  is easily determined from the experimental curve.  $\gamma_{peak}$  and  $\varepsilon_{peak}$ vary in the same way. So if the theoretical  $\varepsilon_{peak}$  is smaller than the experimental one, a greater value for  $\gamma_{peak}$  is adopted to determine new values for *B* and *M*. The process is repeated until sufficiently precise values are determined for these parameters.

#### **II) Viscous deformation**

An anisotropic extension of the isotropic creep law can be defined by making anisotropic both the strain rate and the stress threshold with two different sets of  $a_N$  and  $a_T$  denoted by  $(a_N^v, a_T^v)$  for viscous set and  $(a_N^p, a_T^p)$  for plastic model or stress threshold: viscous strain rate will be multiplied by  $\beta^v$  and the stress threshold divided by  $\beta^p$  (Figure).



Indicator surface of 
$$1/\beta^{p}$$

Indicator surface of 
$$\beta^{\nu}$$

If the uniaxial stress  $\sigma_{\theta}$  is applied in a direction making an angle  $\theta$  with respect  $X_1$  then the axial creep strain  $\varepsilon_{\theta}$  measured in this direction is assumed to be:

$$\varepsilon_{\theta}(t) = a \beta^{\nu}(\theta) < \beta^{p}(\theta)\sigma_{\theta} - \sigma_{c} >^{n} t^{\alpha}$$
(1.49)

where *a*, *n*,  $\alpha$ ,  $\sigma_c$  are four material constants,  $\beta^{\nu}(\theta)$  and  $\beta^{p}(\theta)$  two direction dependency coefficients for the stain rate and the stress threshold and the *positive part* function <> is defined as:

$$\langle x \rangle = 0$$
 if  $x < 0$   
 $\langle x \rangle = x$  if  $x \ge 0$ 

The four parameters *a*, *n*,  $\alpha$ ,  $\sigma_c$  can be identified from uniaxial creep results If  $\alpha = 1$ , the Norton-Hoff creep model is recovered.

The incremental constitutive equation for creep function (1.49) is written by introducing the auxiliary parameter  $\xi$  and the transformed stresses  $\tilde{\sigma}_{e}^{p}$ ,  $\tilde{\sigma}_{e}^{v}$ ,  $\tilde{S}^{v}$  with:

$$\dot{\xi} = \left(a \beta^{\nu} < \tilde{\sigma}_{e}^{p} - \sigma_{c} >^{n}\right)^{1/\alpha}$$
(1.50)

And

$$\dot{\mathbf{\epsilon}}^{\nu} = \frac{3}{2} \alpha \, \xi^{\alpha - 1} \dot{\xi} \, \frac{\tilde{\mathbf{S}}^{\nu}}{\tilde{\mathbf{\sigma}}^{\nu}_{a}} \tag{1.51}$$

To avoid numerical problems near  $\xi = 0$ , the law is completed by:

$$\dot{\boldsymbol{\varepsilon}}^{\nu} = \frac{3}{2} \alpha \, \varepsilon_0^{\alpha - 1} \dot{\boldsymbol{\xi}} \, \frac{\boldsymbol{S}^{\nu}}{\tilde{\boldsymbol{\sigma}}_e^{\nu}} \quad \text{if} \quad \boldsymbol{\xi}^{\alpha} \le \, \varepsilon_0 \tag{1.52}$$

Thus an additional parameter  $\varepsilon_0$  is introduced. The transformed stresses  $\tilde{\sigma}^v, \tilde{S}^v, \tilde{\sigma}_e^v$  are defined by transformation with  $(a_N, a_T) = (a_N^v, a_T^v)$ . The viscosity anisotropy parameter  $\beta$  is defined by the same expression (1.9),(1.10) but with parameters  $(a_N^v, a_T^v)$ :

$$\beta^{\nu} = \frac{\tilde{\sigma}_{e}^{\nu}}{\sigma_{e}}$$
(1.53)

The transformed stresses  $\tilde{\mathbf{\sigma}}^{p}$ ,  $\tilde{\mathbf{S}}^{p}$ ,  $\tilde{\mathbf{\sigma}}^{p}_{e}$  are defined by transformation with  $(a_{N}, a_{T}) = (a_{N}^{p}, a_{T}^{p})$ Thus, the anisotropy is defined by two sets of parameters  $(a_{N}^{v}, a_{T}^{v})$  and  $(a_{N}^{p}, a_{T}^{p})$ .

Note that if the stress threshold  $\sigma_c$  is greater than plastic strength then no viscous strain will be produced because the stress remaining in the elastic domain defined by the plastic criterion cannot exceed  $\sigma_c$ .

Nb = 24 $Param1 = E_1$  $Param2 = E_2$ Param3 =  $v_{12}$ Param4 =  $v_{13}$ Param5 =  $\mu_{12}$ Param6 =  $\omega$  (in degrees) Param7 = C ( $C_i$  if evolution) Param8 =  $\phi$  (in degrees) Param9 =  $\psi$  (in degrees) Param10 =  $\sigma_T$ Param11 = Mohr-Coulomb/Drucker-Prager Option) (MC:0, DPe:1, DPi:2, DPf:3, PMC:4)  $Param12 = a^{p}{}_{N}$ Param13 =  $b^p_T$ Param 14 = a(attention to the stress and time units) Param15 = n $Param16 = \alpha$ Param17 =  $\sigma_c$ Param18 =  $a^{v}_{N}$ Param19 =  $b^{v}_{T}$  $Param20 = \varepsilon_0$ Param21 =  $\eta_c$  (cohesion reduction) Param22 =  $\eta_{\phi}$  (friction angle reduction) Param23 = B (*plasticity brittleness*) Param24 = M (positive hardening parameter)

### Note

• If  $C \ge 10E_1$  no plastic strain will be calculated (the model becomes viscoelastic). The parameters 6, 7 and 11 have no effects. But  $a_N^p$  and  $a_T^p$  can be used for viscous strain.

• If a = 0, no viscous strain will be calculated (the model becomes elastoplastic). The parameters 13 to 18 will not be used.

• If  $\eta_c = \eta_{\phi} = 0$  no hardening or softening evolution for *C* et  $\phi$  and *B* is not used.

Internal Variables: Vin(n,1): reserved for damage (not existing for this material) Vin(n,2):  $\xi$ , internal

- Vin(*n*,3): Plastic shear deformation  $\gamma$
- Vin(n,4): Reduction factor for cohesion,  $V_c$
- Vin(n,5) : Reduction factor for friction angle,  $V_{\phi}$
- Vin(n,6) : Reduction factor for tensile strength,  $V_T$

|                                    | ropic ElastoViscoPlasticity<br>uckPrag.(1,2,3)+ Creep |
|------------------------------------|-------------------------------------------------------|
| Nb: 24                             |                                                       |
| $Param1 = E_1$                     | $Param 13 = b^p_T$                                    |
| $Param2 = E_2$                     | Param14 = a                                           |
| Param3 = $v_{12}$                  | Param15 = n                                           |
| Param4 = $v_{13}$                  | $Param 16 = \alpha$                                   |
| Param5 = $\mu_{12}$                | $Param 17 = \sigma_c$                                 |
| Param6 = $\omega$ (in degrees)     | $Param 18 = a_N^{\nu}$                                |
| Param7 = $C$                       | Param19 = $b_T^{\nu}$                                 |
| Param8 = $\phi$ (in degrees)       | $Param20 = \varepsilon_0$                             |
| Param9 = $\psi$ (in degrees)       | Param21 = $\eta_c$                                    |
| $Param10 = \sigma_T$               | Param22 = $\eta_{\phi}$                               |
| Param11 = <i>Option</i> (01,2,3,4) | Param $23 = B$                                        |
| $Param12 = a^{p}{}_{N}$            | Param24 = M                                           |

# <u>**31600**</u> : Elastic-Damage material with modified Drucker-Prager softening criterion

**Note**: Model to be developed. Not available! Isotropic elasticity with damage:

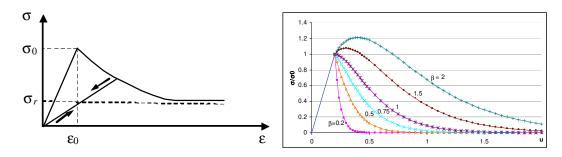
$$\boldsymbol{\varepsilon} = \frac{1+\mathbf{v}}{E(1-D)}\boldsymbol{\sigma} - \frac{\mathbf{v}}{E(1-D)}tr(\boldsymbol{\sigma})\boldsymbol{\delta}$$

Damage criterion:

$$F(\mathbf{\sigma}, D) = \sqrt{\sigma_e^2 + b^2 g^2} + \sin \alpha I_1 - gK$$
  

$$\sigma_e = \sqrt{3J_2}, \quad I_1 = tr(\mathbf{\sigma})$$
  

$$g(D) = \eta_r + (1 - \eta_r)(1 - D) [1 - \beta \ln(1 - D)], \qquad \eta_r = \frac{\sigma_r}{\sigma_0}$$



Nb = 7 Param1 = E Param2 = v Param3 = sin  $\alpha$ Param4 = K Param5 =  $\beta$ Param6 =  $\eta_r$ Param7 = b Variable interne Vin(n,1) : D *Condition* :

 $b \cos \alpha < K$  must be satisfied.

| 31600             | Elastic-Damage material with modified<br>Drucker-Prager softening criterion |
|-------------------|-----------------------------------------------------------------------------|
| Nb: 7             |                                                                             |
| Param1 = E        |                                                                             |
| Param $2 = v$     |                                                                             |
| Param3 = sin      | α                                                                           |
| Param $4 = K$     |                                                                             |
| Param $5 = \beta$ |                                                                             |
| Param6 = $\eta_r$ | Condition : $b \cos \alpha < K$                                             |
| Param $7 = b$     |                                                                             |

## I.4) Mechanics - ANCHORS

## 41100 : Elastic Rock Anchor

Axial deformation of the anchor rod:  $\varepsilon = \frac{F_b - F_0}{ES}$ 

 $F_b$  axial force in the rod,  $F_0$  prestress axial force,

Elastic contact between rod and rock :  $\underline{\sigma} = K \underline{u}$ (the same model 21100)

**Note**: For the section *S* to take into account the same remarks that for bar elements (material model 11100) are valid. The stiffness parameters  $K_t$ ,  $K_n$  and  $K_{tn}$  here take into account the circumference of the steel rod as well as the number of anchors per unit thickness of the model. For instance, if the grout filling the space between the rod and the rock has a thickness *e* and a shear modulus  $\mu$ , then it correspond to a physical stiffness  $\mu/e$  (see the material 21100). Then if the rod has a diameter *D* then the Param2 =  $K_t = \pi D \mu/e$ . In addition, if in the unit thickness of the plane of the model there are *n* anchors (see the note for the bar elements 11100), then Param2 =  $K_t = n \pi D \mu/e$ . The same method is to be applied to  $K_t$  and  $K_{tn}$ .

Nb = 5

Param1 = ES (Young's modulus (steel) × section) Param2 =  $K_t$  (tangent stiffness) Param3 =  $K_n$  (normal stiffness) Param4 =  $K_{nt} = K_{tn}$  (non diagonal stiffness term causing dilatancy) Param5 =  $F_0$  (prestress force)

| 41100                                                                  | Elastic Anchor                                                                                                                                        |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Param $2 = K_t$<br>Param $3 = K_n$<br>Param $4 = K_{nt}$<br>dilatancy) | (Young's modulus (steel) × section)<br>(tangent stiffness)<br>(normal stiffness)<br>= $K_m$ (non diagonal stiffness term causing<br>(prestress force) |



# 41110 : Elastic-Plastic Rock Anchor

Axial deformation of the anchor rod:  $\varepsilon - \varepsilon^{p} = \frac{F_{b} - F_{0}}{ES}$ 

In monotonic loading  $\varepsilon^{p} < 0$  if  $F_{b} < Y_{s}$  where:  $Y_{s} = \sigma_{y} S$  with  $\sigma_{y}$  the plastic limit stress of the rod (steel) and S the rod section

Contact between rod and rock :  $\underline{\sigma} = K (\underline{u} - \underline{u}^p)$ Plastic criterion for rod-rock contact:  $f(\underline{\sigma}) = |\tau| + \sigma_n \tan \phi - c \le 0$ 

Contact model: the same that the model 21120

Nb = 8 Param1 = ES (Young's modulus (steel) × section) Param2 =  $K_t$  (tangent stiffness) Param3 =  $K_n$  (normal stiffness) Param4 =  $K_{nt} = K_{tn}$  (non diagonal stiffness term causing dilatancy) Param5 =  $Y_s$  (plastic limit for the axial force in the anchor) Param6 = C (cohesion) Param7 =  $\phi$  (in degrees, the friction angle) Param8 =  $F_0$  (prestress force)

**Note**: The method of calculation of *S*,  $K_t$ ,  $K_n$ ,  $K_m$  and  $Y_s$  is the same that for materials 41100 et 11110. The cohesion parameter *C* is the product of the physical cohesion of the contact between the rod and the rock (cohesion of the grout material) and the circumference of the rod, and also the number of anchors per unit thickness of the plane model (see materials 41100 and 11100). The angle  $\phi$  is the friction angle (in degrees) of the contact (or the grout material).

| 41110                                                                                                 | Elastic-Plastic Anchor                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Param $2 = K$<br>Param $3 = K$<br>Param $4 = K$<br>Param $5 = Y$<br>Param $6 = C$<br>Param $7 = \phi$ | $CS  (Young's modulus (steel) \times section)$ $K_t  (tangent stiffness)$ $K_m = K_m  (non diagonal stiffness \rightarrow dilatancy)$ $K_s  (plastic limit for axial force in the anchor)$ $C  (cohesion)$ $(in degrees, the friction angle)$ $K_0  (prestress force)$ |

## 41310 : Elastic-Damage Rock Anchor

Axial deformation of the anchor rod:  $\varepsilon - \varepsilon^p =$ 

$$\varepsilon - \varepsilon^p = \frac{F_b - F_0}{ES}$$

 $g(D) = (1-D)(1-\beta \ln(1-D))$ 

In monotonic loading  $\varepsilon^p < 0$  if  $F_b < Y_s$  where:

 $Y_s = \sigma_y S$  with  $\sigma_y$  the plastic limit stress of the rod (steel) and S the rod section Contact between rod and rock :

 $\boldsymbol{\sigma} = (\boldsymbol{K}_D + \boldsymbol{k}_r) (\boldsymbol{u} - \boldsymbol{u}^p)$ 

With:

$$\boldsymbol{K}_{D} = \begin{bmatrix} (1-D)\boldsymbol{K}_{t} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{K}_{n} \end{bmatrix}, \qquad \boldsymbol{k}_{r} = \begin{bmatrix} \boldsymbol{k}_{rt} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{bmatrix} \quad \underline{\boldsymbol{u}}^{p} = \begin{bmatrix} \boldsymbol{u}_{t}^{p} \\ \boldsymbol{0} \end{bmatrix}$$

Damage criterion for rod-rock contact:  $F(\underline{\sigma}, D) = |\tau| - g(D) C$ 

With:

$$F^{p}(\underline{\sigma}) = |\tau| - C_{r}$$

**Note**: The strength parameter takes into account, in the same way that *C*, the circumference of the rod and the number of anchors per unit thickness of the model (see the model 41110).

Nb = 9

Param1 = ES (Young's modulus (steel) × section) Param2 =  $K_t$  (tangent stiffness) Param3 =  $K_n$  (normal stiffness) Param4 =  $Y_s$  (plastic limit for the axial force in the rod)

Param5 = C (cohesion)

Param6 =  $C_r$  (residual cohesion)

Param7 =  $\beta$  (ductility)

Param8 =  $k_{rt}$  (residual tangent stiffness)

Param9 = *Option* (1 if plasticity taken into account)

Internal variable Vin(n,1) : D

## 51100 : Elastic Beam

The efforts in elastic beam are the axial force *F*, the shear force *V* and the bending moment *M*. They are related to the axial strain  $\varepsilon$  and the rotation  $\theta$  by:

$$F = ES \varepsilon$$
,  $M = EI \frac{d\theta}{ds}$ 

The shear force is related to *M* by V = -dM/dx where *x* designates the position *x* along the beam.

Nb = 2 Param1 = ES : Young's modulus (steel)  $\times$  S (section) Param2 = EI : Young's modulus (steel)  $\times$  I (moment of inertia)

Note: The 2D plane modeling, a unit the thickness of the model is considered in relation with a 3D modeling. The section S and the inertia moment I are supposed to correspond to a unit thickness of the model. If there are more or less one beam per unit thickness, these parameters must be multiplied by the number of beams by unit thickness (see for the bar element 11100).

| 51100 | Elastic Beam                                                                                    |
|-------|-------------------------------------------------------------------------------------------------|
|       | : Young's modulus (steel) × S (section)<br>: Young's modulus (steel) × I (moment of<br>inertia) |

## 61100 : Elastic Bolt (beam + contact interface)

Bolt is anchor element with bending and shear effects for the steel rod. The steel rod is modeled as beam element and the contact between the rod and the rock, modeled by a joint element.

The efforts in elastic beam are the axial force *F*, the shear force *V* and the bending moment *M*. They are related to the axial strain  $\varepsilon$  and the rotation  $\theta$  by:

$$F = ES \varepsilon$$
,  $M = EI \frac{d\theta}{ds}$ 

The shear force is related to *M* by V = -dM/dx where *x* designates the position *x* along the beam (the same model 51100).

Elastic contact between rod and rock :  $\underline{\sigma} = K \underline{u}$ (the same model 21100, 41100)

Nb = 5 Param1 = ES Young's modulus (steel) × section Param2 = EI : Young's modulus (steel) × Param3 =  $K_t$  (tangent stiffness) Param4 =  $K_n$  (normal stiffness) Param5 =  $K_{nt} = K_{tn}$  (non diagonal stiffness term causing dilatancy)

**Note**: For the section *S* and the moment of iniertia to take into account the same remarks that for bar elements.

| 61100              | Elastic Bolt (beam + contact interface)                 |
|--------------------|---------------------------------------------------------|
| Nb: 5              |                                                         |
|                    | Young's modulus (steel) × section                       |
| Param $2 = EI$     | : Young's modulus (steel) × intertia                    |
| Param $3 = K_t$    | (tangent stiffness)                                     |
| Param $4 = K_n$    | (normal stiffness)                                      |
| Param $5 = K_{nt}$ | $= K_m$ (non diagonal stiffness $\rightarrow$ dilatancy |

## 61110 : Elastic Bolt with elastoplastic contact

Bolt is anchor element with bending and shear effects for the steel rod. The steel rod is modeled as beam element and the contact between the rod and the rock, modeled by a Mohr-Coulomb elastoplastic contact interface. This model is the extension of the model 61100 to the plasticity of the interface or of the cable model 41110 to accounting for bending moment but without plasticity of the steel rod and without pre-stress.

The efforts in elastic beam are the axial force *F*, the shear force *V* and the bending moment *M*. They are related to the axial strain  $\varepsilon$  and the rotation  $\theta$  by:

$$F = ES \varepsilon$$
,  $M = EI \frac{d\theta}{ds}$ 

The shear force is related to *M* by V = -dM/dx where *x* designates the position *x* along the beam (the same model 51100).

Contact between rod and rock :  $\underline{\sigma} = \mathbf{K} (\underline{u} - \underline{u}^p)$ Plastic criterion for rod-rock contact:  $f(\underline{\sigma}) = |\tau| + \sigma_n \tan \phi - c \le 0$ (the same model 21120, 41110)

Nb = 5 Param1 = ES Young's modulus (steel) × section Param2 = EI : Young's modulus (steel) × Param3 =  $K_t$  (tangent stiffness) Param4 =  $K_n$  (normal stiffness) Param5 =  $K_{nt} = K_{tn}$  (non diagonal stiffness term causing dilatancy) Param6 = C (cohesion of the steel-rock contact) Param7 =  $\phi$  (in degrees, the friction angle of the contact)

**Note**: For the section *S* and the moment of inertia to take into account see the same remarks that for bar elements. For the paremeters  $K_t$ ,  $K_n$ ,  $K_{tn}$  and the cohesion *C* see the same remark that for the material 41110.

| 61110                                                                                       | Elastic Bolt (beam + contact interface)                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Param $2 = EI$<br>Param $3 = K_t$<br>Param $4 = K_n$<br>Param $5 = K_{nt}$<br>Param $6 = C$ | Young's modulus (steel) × section<br>: Young's modulus (steel) × inertia<br>(tangent stiffness)<br>(normal stiffness)<br>= $K_m$ (non diagonal stiffness $\rightarrow$ dilatancy<br>(cohesion)<br>(in degrees, the friction angle) |

# II) Hydraulic

# II.1) Hydraulic - BOREHOLES & TUBES

(associated hydraulic model for bars, beams, anchors and bolts)

# 12100 : Borehole : Steady state flow

The pressure in the borehole is the same that at its wall for the surrounding porous matrix. This model is suitable for calculating steady state flow.

Constitutive law:  $q = -C_t \nabla p$  q: debit in the tube,  $\nabla p$ : fluid pressure gradient along the tube line Nb = 1 Param1 =  $C_t$  (tangent or longitudinal conductivity)

**Note**: *q* is the integral of the fluid velocity in the section of the tube (q = ve). Tube elements are the hydraulic model associated to bar elements (Mechanics). If bar elements are present in the mechanical model, they will be present also in the hydraulic mesh and their hydraulic model must be specified. Put  $C_t = 0$  if they have no contribution to hydraulic flow.

| 12100             | Borehole: Hydraulic model steady state       |
|-------------------|----------------------------------------------|
|                   |                                              |
| Nb: 1<br>Param1 = | $C_t$ (tangent or longitudinal conductivity) |

# **12110** : Borehole : Transient flow

The pressure in the borehole is the same that at its wall for the surrounding porous matrix. This model allows calculating transient flow.

Constitutive law:  $q = -C_t \nabla p$ ,  $C_M \frac{\partial p}{\partial t} = \nabla .(C_t \nabla p)$ 

q: debit in the tube,  $\nabla p$ : fluid pressure gradient along the tube line

Nb = 2

Param1 =  $C_t$  (tangent or longitudinal conductivity) Param2 =  $C_M$  (storage coefficient)

Note: See the note for the material 12100

| 12110                                                 | Borehole: transient flow    |
|-------------------------------------------------------|-----------------------------|
| Nb: 2                                                 |                             |
| Param1 = $C_t$ (tangent or longitudinal conductivity) |                             |
| Param2 = 0                                            | $C_M$ (storage coefficient) |

## 12200 : Tube : Steady state flow

The pressure inside the tube is different from the pressure on its outside wall for the surrounding porous matrix. This model is suitable for calculating steady state flow.

Constitutive law:  $q = -C_t \nabla P$ ,  $\nabla . (C_t \nabla P) + C_n (p - P) = 0$  P: pressure inside the tube which can be different from the outside pressure  $\nabla P$ : fluid pressure gradient along the tube line p: pressure outside the tube q: debit in the tube,  $\nabla p$ : fluid pressure gradient along the tube line Nb = 2 Param1 =  $C_t$  (tube longitudinal conductivity) Param2 =  $C_n$  (wall-through conductivity, zero if impervious wall)

**Note**: For this model the pressure is continuous in the matrix when crossing the tube but different from the pressure inside the tube.

| 12200 | <b>Tube :</b> Hydraulic model for steady state flow                         |
|-------|-----------------------------------------------------------------------------|
| Nb: 2 |                                                                             |
|       | $C_t$ (tube longitudinal conductivity)<br>$C_n$ (wall-through conductivity) |

## 12210 : Tube : Transient flow

The pressure inside the tube is different from the pressure on its outside wall for the surrounding porous matrix. This model allows calculating transient flow.

Constitutive law: 
$$q = -C_t \nabla P$$
,  $C_M \frac{\partial P}{\partial t} = \nabla \cdot (C_t \nabla P) + C_n (p - P)$ 

*P* : pressure inside the tube which can be different from the outside pressure  $\nabla P$  : fluid pressure gradient along the tube line *p* : pressure outside the tube

q : debit in the tube,  $\nabla p$  : fluid pressure gradient along the tube line

Nb = 3 Param1 =  $C_t$  (tube longitudinal conductivity) Param2 =  $C_n$  (wall-through conductivity, zero if impervious wall) Param3 =  $C_M$  (storage coefficient)

Note: See the note for 12200.

| 12210         | Tube : Hydraulic model for transient flow                                                      |
|---------------|------------------------------------------------------------------------------------------------|
| Param $2 = C$ | t (tube longitudinal conductivity)<br>n (wall-through conductivity)<br>M (storage coefficient) |

# II.2) Hydraulic - ROCKJOINTS & FRACTURES

See the **General Note** 22210 at the end of this section explaining the parameters of interface model for flow.

# <u>22100</u> : Hydraulic rock joint, *infinite* transverse conductivity

Constitutive law:  $q = -C_t \nabla p$  q: debit in the fracture,  $\nabla p$ : fluid pressure gradient along the fracture line Nb = 1 Param1 =  $C_t$  (tangent conductivity)

**Note**: Infinite transvers conductivity means that the pressure is the same on the two sides of the fracture or joint element. If the joint is assimilated to a thin layer of thickness *e* of a porous material with permeability *k* (see the material 32100), then the equivalent  $C_t$  would be  $C_t = ke$  and *q* would represent the integral of velocity in the section (thickness) of the fracture (q = ve).

| 22100                   | Hydraulic interface with <i>infinite</i> transverse conductivity |
|-------------------------|------------------------------------------------------------------|
| Nb: 1<br>Param1 = $C_t$ | (tangent conductivity)                                           |

# <u>22110</u> : Transient hydraulic flow in rock joint, *infinite* transverse conductivity

Constitutive law:

$$q = -C_t \nabla p$$
,  $C_M \frac{\partial p}{\partial t} = \nabla \cdot (C_t \nabla p)$ 

q: debit in the fracture,  $\nabla p$ : fluid pressure gradient along the fracture line

Nb = 2

Param1 =  $C_t$  (tangent conductivity) Param2 =  $C_M$  (storage coefficient)

Note: For the infinite transvers conductivity see the note for the material 22100

| 22110 | Hydraulic interface with <i>infinite</i> transverse<br>Conductivity, transient flow |
|-------|-------------------------------------------------------------------------------------|
|       | (tangent conductivity)<br>(storage coefficient)                                     |

# <u>22200</u> : Hydraulic flow in rock joint, *finite* transverse conductivity

Constitutive law:

 $q = -C_t \nabla P, \quad V_n = C_n \llbracket p \rrbracket$ 

q: debit in the fracture,  $\nabla p$ : fluid pressure gradient along the fracture line  $V_n$ : The fluid velocity perpendicular to the interface. Its is the average value of the normal fluid velocity in the matrix on the two sides of the joint element.

 $[\![p]\!]$ : pressure discontinuity (jump) across the interface

Nb = 2

 $Param1 = C_t$  (tangent conductivity)

 $Param2 = C_n$  (transverse or normal conductivity)

**Note:** For this model the pressure is discontinuous across the fracture (pressure jump between the two sides of the fracture). The only case with clear physical meaning is then the case  $C_n = 0$  for witch the fracture acts as a barrier to the flow perpendicular to its surface. The variable *P* in  $q = -C_t \nabla P$  represents the mean value of the pressure on the two sides,  $(p^+ + p^-)/2$ . The case  $C_t = 0$  corresponds to an empty joint with no flow through it.

| 22200 | Hydraulic interface with <i>finite</i> transverse conductivity            |
|-------|---------------------------------------------------------------------------|
|       | $C_t$ (tangent conductivity)<br>$C_n$ (transverse or normal conductivity) |

# <u>22210</u> : Transient hydraulic flow in rock joint, *finite* transverse conductivity

Constitutive law:

$$q = -C_t \nabla P , \quad V_n = C_n \llbracket p \rrbracket, \quad C_M \frac{\partial p}{\partial t} = \nabla \cdot (C_t \nabla p)$$

q : debit in the fracture,  $\nabla P$  : fluid pressure gradient along the fracture line

- $V_n$ : The fluid velocity perpendicular to the interface. Its is the average value of the normal fluid velocity in the matrix on the two sides of the joint element.
- [p]: pressure discontinuity (jump) across the interface

Nb = 3

Param1 =  $C_t$  (tangent conductivity)

Param2 =  $C_n$  (transverse or normal conductivity)

Param $3 = C_M$  (storage coefficient)

| 22210                                              | Hydraulic interface with <i>finite</i> transverse conductivity |
|----------------------------------------------------|----------------------------------------------------------------|
| Nb: 3                                              |                                                                |
| Param1 =                                           | $C_t$ (tangent conductivity)                                   |
| Param2 = $C_n$ (transverse or normal conductivity) |                                                                |
| Param3 = 0                                         | $C_M$ (storage coefficient)                                    |

**General Note 22210**: If the joint element represents a thin layer of thickness e constituted of porous material with permeability k and storage coefficient  $c_m$  then its tangent and normal conductivities and storage coefficient  $C_M$  are given respectively by:

$$C_t = k e$$
,  $C_n = k/e$ ,  $C_M = c_m e$ 

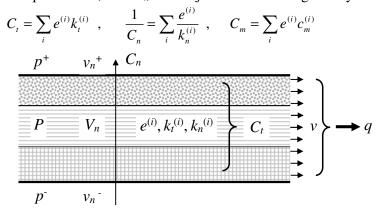
For the permeability k and the storage coefficient  $c_m$  of the bulk material see the note for the material 32100.

The debit q corresponds to the integral of the fluid velocity on the layer section, and P is the average pressure in the layers:

$$q = \int v \, de$$
,  $P = \frac{1}{e} \int p \, de$ 

If the permeability is high and thickness small, there is continuity of pressure across the joint element (no pressure difference between the two sides). In this case an infinite value of  $C_n$  is to be modelled. To avoid numerical problems, in this case a new model is defined in Disroc (models 22100 and 22110) which implicitly supposes the pressure equality on the two sides and does not need a  $C_n$  value. On opposite, if  $C_n = 0$  then the interface acts as a barrier to the flow perpendicular to its surface.

If the joint element represents an assemblage of several thin layers of bulk materials (three layers in the figure) with which layer (*i*) having a thickness  $e^{(i)}$ , a permeability  $k_t^{(i)}$  in the direction parallel to the layer and  $k_n^{(i)}$  in the direction perpendicular to it and storage coefficient  $c_m^{(i)}$ , then the equivalent  $C_t$  and  $C_n$  for the joint element are given by:



Concerning the flow perpendicular to the fracture, we note that  $v_n^+$  and  $v_n^-$  are the flow *in the matrix* perpendicular to the fracture and  $V_n = (v_n^+ + v_n^-)/2$ .

# II.3) Hydraulic - BULK MATERIALS

## 32100 : Darcy flow with isotropic permeability

Constitutive law:

$$\underline{v} = -k \underline{\nabla}p$$

v : fluid velocity in the porous material ,  $\underline{\nabla}p$  : fluid pressure gradient vector

k is a conductivity parameter which is called "permeability" for simplicity. It is related to the intrinsic permeability  $k_{in}$  and the Darcian permeability  $k_{Darcy}$  by the following relations:

$$k = \frac{k_{in}}{\mu} = \frac{k_{Darcy}}{\rho_f g}$$

Where  $\mu$  is the dynamic viscosity and  $\rho_f$  the specific mass of the fluid and *g* the gravitational acceleration.

In SI system of units with  $\underline{v}$  (*m*/*s*),  $k_{in}$  (*m*<sup>2</sup>),  $\mu$  (*Pa.s*),  $\rho_f$  (*Kg*/*m*<sup>3</sup>), *g* (*ms*<sup>-2</sup>) and  $k_{Darcy}$  (*m*/*s*), the parameter k is expressed in  $m^2/(Pa.s)$  or equivalently in (*m*/*s*)/(*Pa*/*m*).

Note that for water:

 $\mu = 1.01 \times 10^{-3}$  Pa.s  $\rho_w g = 9.81 \times 10^3$  Pa/m So, if, for instance, a fluid with the relative density  $\gamma$  is considered (fluid density  $\gamma$  times greater than water) and if the pressure is expressed in *MPa*, distances in *m* and the fluid velocity in *m/s*, then we have  $\rho_f g = \gamma (9.81 \times 10^{-3}) MPa/m$ . Then the Disroc permeability parameter k ( $m^2/MPa.s$ ) have the following value function of  $k_{Darcy}$  (*m/s*):

$$k = \frac{1}{\gamma} \frac{k_{Darcy}}{9.81 \times 10^{-3}}$$

Nb = 1Param1 = k (permeability)

| 32100                 | Darcy's law with isotropic permeability |
|-----------------------|-----------------------------------------|
| Nb: 1<br>Param1 = $k$ | (permeability)                          |

# <u>32110</u> : Transient Darcy flow with isotropic permeability

Constitutive law:

$$\underline{v} = -k \, \underline{\nabla} p \quad , \quad C_{\scriptscriptstyle M} \; \frac{\partial p}{\partial t} = div(k \nabla p)$$

v : fluid velocity in the porous material ,  $\underline{\nabla}p$  : fluid pressure gradient vector

For the definition of the unit of k see the material 32100.  $C_M$  has the dimension and the unit of the pressure p.

Nb = 2 Param1 = k (permeability) Param2 =  $C_M$  (storage coefficient)

**32110** Transient Darcy flow with isotropic permeability

Nb: 2 Param1 = k (permeability) Param2 =  $C_M$  (storage coefficient)

# <u>32111</u> : Transient Darcy flow with evolving permeability (GeliSol)

Constitutive law:

$$\underline{v} = -\frac{k_{Darcy}}{\gamma_w} k_r(S_\lambda) \nabla(p + \gamma_w z) \quad , \quad C_M \frac{\partial p}{\partial t} = div \, \underline{v}$$
$$k_r(S_\lambda) = \sqrt{S_\lambda} \left( 1 - (1 - S_\lambda^{1/m})^m \right)^2$$

- v : fluid velocity in the porous material,
- p: fluid pressure,  $\nabla(.)$ : gradient vector
- $\gamma_w$ : fluid (water) unit weight (=  $\rho_w g$ ),
- $C_M$ : Storage coefficient (= 1/M with M the Biot Modulus for poroelastic material)  $k_{Darcy}$ : Darcy's permeability
- $k_r$ : relative permeability
- *m* : positive constant parameter
- $S_{\lambda}$ : Degree of saturation

### Note 210519

 $S_{\lambda}$  is calculated from the relation  $S_{\lambda}=1$ -  $V^{in}{}_{h}$  where  $V^{in}{}_{h}$  is an internal variable which can be given by the user in the User module in the array Vinh(n,1). For the material GeliSol, it is automatically calculated from the freezing curve of the material which provides the degree of saturation in liquid water,  $S_{\lambda}$  function of the temperature.

Nb = 4 Param1 =  $k_{Darcy}$  (permeability)

Param2 =  $C_M$  (storage coefficient) Param3 =  $\gamma_w$  (water unit weight) Param4 = m

Internal variable:  $V^{in}{}_{h}(n,1)$ : internal variable  $1-S_{\lambda}$ 

| 32111         | Transient Darcy flow with evolving<br>Permeability (Gelisol)                                |
|---------------|---------------------------------------------------------------------------------------------|
| Param $2 = 0$ | $C_{Darcy}$ (permeability)<br>$C_M$ (storage coefficient)<br>$M_w$ (water unit weight)<br>m |

# 32200 : Darcy flow with anisotropic permeability

Constitutive law:  $\underline{v} = -\mathbf{k} \nabla p$ , v : fluid velocity in the porous material,  $\nabla p$  : fluid pressure gradient vector

For the definition of the unit of k see the material 32100.

Nb = 3 Param1 =  $k_{xx}$ Param2 =  $k_{yy}$ Param3 =  $k_{xy} = k_{yx}$ 

| 32200                                                                | Darcy's law with anisotropic permeability |
|----------------------------------------------------------------------|-------------------------------------------|
| Nb: 3<br>Param1 = $k_{xx}$<br>Param2 = $k_{yy}$<br>Param3 = $k_{xy}$ |                                           |

# <u>32210</u> : Transient Darcy flow with anisotropic permeability

Constitutive law:

$$\underline{v} = -\mathbf{k} \, \underline{\nabla} p \,, \qquad C_M \, \frac{\partial p}{\partial t} = div(\mathbf{k} \nabla p)$$

v : fluid velocity in the porous material,  $\underline{\nabla}p$  : fluid pressure gradient vector

For the definition of the unit of k see the material 32100.  $C_M$  has the dimension and the unit of the pressure p.

Nb = 4 Param1 =  $k_{xx}$ Param2 =  $k_{yy}$ Param3 =  $k_{xy} = k_{yx}$ Param4 =  $C_M$  (storage coefficient)

| 32210                                                                         | Transient Darcy's law with anisotropic permeability |
|-------------------------------------------------------------------------------|-----------------------------------------------------|
| Nb: 4<br>Param1 = $k_x$<br>Param2 = $k_y$<br>Param3 = $k_x$<br>Param4 = $C_y$ | y                                                   |

# II.4) Hydraulic 40000 Cables → See 12200, 12210 Tubes

# II.5) Hydraulic 50000 Beams → See 12100, 12110 Boreholes

# II.4) Hydraulic 60000 Bolts $\rightarrow$ See 12200, 12210 Tubes

# **III)** Thermal

# III.1) Thermal - WIRES & TUBES (associated thermal model for bars, beams, anchors and bolts) III.2) Thermal - ROCKJOINTS & FRACTURES III.3) Thermal - BULK MATERIALS

## 33111 : Transient Heat flow with thawing (GeliSol)

Constitutive law of the material includes the equations of heat transport by thermal diffusion (Fourier's law) and by advection. In the interval of temperatures corresponding to the thawing process, the liquid water content decreases because the water is transformed into ice (see the figure). In these temperatures interval, the thermal capacity includes the latent heat of the water to ice phase change L.

$$\underline{J}_{D} = -\Lambda \cdot \nabla T \quad , \qquad \underline{J}_{A} = \rho_{\lambda} C_{\lambda}^{p} T \underline{v} \quad , \qquad \underline{J} = \underline{J}_{D} + \underline{J}_{A}$$
(3.1)

$$\left(\rho C^{p} + \rho_{\lambda} L G \phi\right) \frac{\partial T}{\partial t} = div(\Lambda . \nabla T) - div\left(\rho_{\lambda} C_{\lambda}^{p} T \underline{v}\right)$$
(3.2)

$$G(T) = \frac{\partial S_{\lambda}(T)}{\partial T}$$
(3.3)

T: temperature,

 $\nabla T$ : temperature gradient,

 $\underline{J}_D$ : diffusive heat flow,

 $J_A$ : advective heat flow,

 $\Lambda$ : thermal conductivity,

 $\rho$ : mass density (of the porous material, soil or rock),

 $C^{p}$ : specific heat capacity of the porous material (soil, rock) at constant pressure,

- $\rho_{\lambda}$ : pore fluid (water) mass density,
- $C^{p}_{\lambda}$ : pore fluid (water) specific heat capacity,

φ : porosity,

L : latent heat of the ice-water phase change (heat needed for unit mass change),

 $S_{\lambda}(T)$ : liquid saturation degree at temperature T

New variables are defined for simplicity:

- $L_{\nu}$ : volumetric latent heat of the water-ice phase change.  $L_{\nu} = \rho_{\lambda} L$  where  $\rho_{\lambda}$  is the water density and *L* the (specific) latent heat of the ice–water phase change
- $C_{\nu\lambda}$ : volumetric heat capacity of the liquid (water)  $C_{\nu\lambda} = \rho_{\lambda}C_{\lambda}^{p}$  where  $\rho_{\lambda}$  is the density and  $C_{\lambda}^{p}$  the specific heat capacity at constant pressure of the liquid.
- $C_{vu}$ : volumetric heat capacity of the unfrozen soil:  $C_{vu} = \rho C^p$  where  $\rho$  is the density and  $C^p$  the specific heat capacity at constant pressure of the soil at unfrozen state,

 $C_{vf}$ : volumetric heat capacity of the frozen soil:  $C_v = \rho C^p$  where  $\rho$  is the density and  $C^p$  the specific heat capacity at constant pressure of the soil at frozen state,

 $C_{vs}$ : volumetric heat capacity of the partially frozen soil:

$$C_{vs} = S_{\lambda} C_{vu} + (1 - S_{\lambda}) C_{vf}$$

The heat conductivity varies also with the water content between the values corresponding to the unfrozen and frozen states:

$$\Lambda = S_{\lambda} \Lambda_{u} + (1 - S_{\lambda}) \Lambda_{f}$$

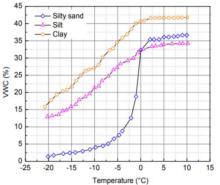
 $\Lambda_u$ : heat conductivity of the soil at unfrozen state,

 $\Lambda_f$ : heat conductivity of the soil at frozen state.

With these notations the equation (3.2) reads:

$$\left(C_{\nu s} + L_{\nu} G \phi\right) \frac{\partial T}{\partial t} = div(\Lambda . \nabla T) - div\left(C_{\nu \lambda} T \underline{\nu}\right)$$
(3.4)

The evolution of  $S_{\lambda}$  with temperature is deduced from the freezing curve of the soil, the material data giving the evolution of the liquid water content in the soil at different temperatures:



 $W_c$ : unfrozen water content of the partially frozen soil  $W_c^{Max}$ : water content of the unfrozen soil

$$S_{\lambda}(T) = \frac{W_c(T)}{W_c^{Max}}$$
$$G(T) = \frac{\partial S_{\lambda}(T)}{\partial T}$$

Variation of the water content with the temperature for different soils (Li *et al.*, 2018) Li, H., Yang, Z. J., and Wang, J. (2018). Unfrozen water content of permafrost during thawing by the capacitance technique. *Cold Regions Science and Technology*, 152 :15-22.

Different options exist to define and introduce the function  $S_{\lambda}(T)$  in the model:

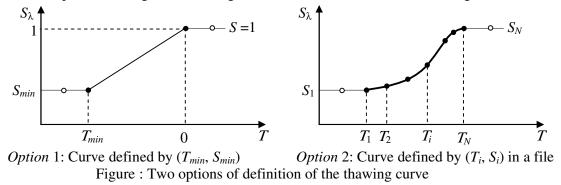
- If the parameter *Option* = 0 there is no thawing modeled.
- If the parameter Option = 1 then a simple model of thawing is considered:  $S_{\lambda}(T)$  varies linearly between  $T=T_{min}<0$  and T=0 from  $S_{\lambda}(T_{min})=S_{min}$  to  $S_{\lambda}(0)=1$ . In this case  $T_{min}$  and  $S_{min}$  are given as parameter of the material (Param7, Param8).
- If the parameter Option = 2, the thawing curve is defined in a file. The file is text file called *name*.dat where *name* is the name of the material. This file has the following format:

#Comments: the thawing curve for the material "Clay" #The curve includes N points Curve N $T_1$   $S_1$   $\begin{array}{ccc} T_2 & S_2 \\ \cdots \\ T_N & S_N \end{array}$ 

The lines before the line starting by keyword 'Curve' are free comments. The line containing just the keyword 'Curve' is mandatory. Then follows N, the number of points, and then N lines containing the pair ' $T_i$   $S_i$ ' where  $T_i$  are increasing temperatures and  $S_i$  the liquid water contents with values between 0 and 1. Then the function  $S_{\lambda}(T)$  is built in the following way:

 $S_{\lambda}(T)=S_1$  if  $T \leq T_1$ ,  $S_{\lambda}$  varies linearly from  $S_i$  to  $S_{i+1}$  for  $T_i \leq T \leq T_{i+1}$ ,  $S_{\lambda}(T)=S_N$  if  $T_N \leq T$ 

Un example of thawing curve file is given in the folder Tools, called thawing.dat.



### Note 210521:

The thawing curve  $S_{\lambda}(T)$  is a characteristic of the soil and an input of the model. From this data, at each temperature, the  $S_{\lambda}$  is determined. This value is used by the hydraulic and mechanical material models 32111 and 31121 (Gelisol) in order to express the effects of thawing process on the hydraulic (permeability) and mechanical properties.

Nb = 10

Param1 =  $\Lambda_u$ : thermal conductivity of the unfrozen soil, Param2 =  $\Lambda_f$ : thermal conductivity of the frozen soil, Param3 =  $C_{vu}$ : volumetric heat capacity of the unfrozen soil, Param4 =  $C_{vf}$ : volumetric heat capacity of the frozen soil, Param5 =  $C_{v\lambda}$ : volumetric pore fluid (water) heat capacity, Param6 =  $L_v$ : volumetric latent heat of the water-ice phase change, Param7 =  $\phi$ : porosity, Param8 = *Thawing Option* for the definition of the thawing curve  $S_{\lambda}(T)$ , Param9= $T_{min}$ Param10= $S_{min}$ 

Internal variable:  $V^{in}_{T}(n,1)$ : internal variable  $1-S_{\lambda}(T)$ 

| 33111         | Transient heat flow with thawing (Gelisol)                      |
|---------------|-----------------------------------------------------------------|
| Nb = 10       |                                                                 |
| Param1 = .    | $\Lambda_{u}$ : unfrozen soil thermal conductivity,             |
| Param2 = .    | $\Lambda_{\rm f}$ : frozen soil thermal conductivity,           |
| Param $3 = 0$ | <i>C<sub>vu</sub></i> : unfrozen soil volumetric heat capacity, |
| Param $4 = 0$ | $C_{vf}$ : frozen soil volumetric heat capacity,                |
| Param $5 = 0$ | $C_{\nu\lambda}$ : pore fluid (water) volumetric heat capacity, |
| Param6 = $L$  | <i>v</i> :water-ice phase change volumetric latent heat,        |
| Param7 = ¢    | ): porosity,                                                    |
| Param $8 = 7$ | Thawing Option (0,1,2)                                          |
| Param9= $T_i$ | min                                                             |
| Param10=      | S <sub>min</sub>                                                |

# IV) Custom Special Models

## HiDCon : High Deformable Concrete

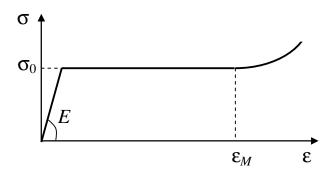
The elastic-plastic behavior of Highly Deformable Concrete Elements (HiDCon) can be modeled by a plane Mohr-Coulomb criterion with hardening. With  $\sigma_{zz}$  supposed to be the intermediate principal stress and with negative compression sign convention the Mohr-Coulomb criterion reads:

$$F(\mathbf{\sigma}, \xi) = (\sigma_1 - \sigma_2) + (\sigma_1 + \sigma_2) \sin \phi - 2C(\xi) \cos \phi \le 0$$

Where  $\xi$  is the hardening parameter and  $(\sigma_1, \sigma_2)$  the major and minor in-plane principal stresses. The compressive strength  $R_c$  (the UCS) is related to the cohesion by:

$$R_{c}(\xi) = \frac{2C(\xi)\cos\phi}{1-\sin\phi}$$

And it varies with the plastic strain according to the hardening rule. This rule is chosen in a way to have the typical behavior of HiDCon elements illustrated in the following figure.



Under a uniaxial stress, the deformation is elastic and linear up to the stress  $\sigma_0$  for the axial strain  $\varepsilon_0 = \sigma_0/E$  and then a perfect plastic strain takes place up to a total axial strain  $\varepsilon_M$ . After this stage, the stress increases with a paste which is a quadratic function of the plastic strain.

 $\dot{\mathbf{\epsilon}} = \dot{\mathbf{\epsilon}}^e + \dot{\mathbf{\epsilon}}^p$ 

#### **Constitutive model**:

**Elasticity:** 

$$\dot{\boldsymbol{\varepsilon}}^{e} = \frac{1+\nu}{E} \dot{\boldsymbol{\sigma}} \cdot \frac{\nu}{E} tr(\dot{\boldsymbol{\sigma}}) \,\boldsymbol{\delta} ,$$
  
$$\dot{\boldsymbol{\varepsilon}}^{p} = \dot{\lambda} \frac{\partial G}{\partial \boldsymbol{\sigma}} , \quad \begin{array}{l} if \ F < 0 \ then \quad \dot{\lambda} = 0 \\ if \ F = 0 \ then \quad \dot{\lambda} \ge 0 , \ \dot{F} \le 0 , \ \dot{\lambda}\dot{F} = 0 \end{array}$$

Plasticity:

$$G(\mathbf{\sigma}) = (\sigma_1 - \sigma_2) + (\sigma_1 + \sigma_2) \sin \psi$$

Hardening rule:

$$R_{c}(\xi) = \sigma_{0} + \beta E \left\langle \xi - \varepsilon_{0}^{p} \right\rangle^{2} \qquad \dot{\xi} = \alpha \sqrt{\dot{\varepsilon}^{p} : \dot{\varepsilon}^{p}}$$

where the hardening variable  $\xi$  starts from 0 at the initial state of the material, the symbol  $\langle . \rangle$  stands for the positive part:

Fracsima - 2016

www.fracsima.com

$$\langle x \rangle = 0$$
 if  $x < 0$   
 $\langle x \rangle = x$  if  $x \ge 0$ 

and  $\varepsilon_0^p = \varepsilon_M - \frac{\sigma_0}{E}$  and  $\beta$  a material parameter.  $\alpha$  is an internal constant parameter ensuring that for a unixial compression test  $\xi$  represents the axial plastic strain.

Nb = 7 Param1 = E Param2 = v Param3 =  $\sigma_0$  (initial UCS) Param4 =  $\phi$  (°) Param5 =  $\psi$  (°) Param6 =  $\varepsilon_M$ Param7 =  $\beta$ 

Internal variable Vin(n,1) :  $\xi$ Necessary Condition on parameters:  $\varepsilon_M > \sigma_0/E$ 

www.fracsima.com